
Investigations on the
Imaginary Roots of Equations

Leonhard Euler

1. Every algebraic equation which has been freed of fractions and radical

signs always reduces to this general form

xn +Axn−1 +Bxn−2 + Cxn−3 +Dxn−4 + · · ·+N = 0,

where the letters A, B, C, D, . . . , N indicate constant real quantities, either

positive or negative, not excluding zero. The roots of such an equation are

the values which when put for x produce an identity equation 0 = 0. Now

if x + α is a divisor or a factor of the given formula, the other factor being

indicated by X, so that the equation has this form

(x+ α)X = 0,

then it is clear that this happens when

x+ α = 0, or x = −α.

From this we see that the roots of an equation are found by looking for the

divisors or factors of this same equation; and all the roots of an equation are

derived from all the simple divisors of the form x+ α.

2. So to find all the roots of a given equation, we have only to look for all

the simple factors of the quantity

xn +Axn−1 +Bxn−2 + Cxn−3 +Dxn−4 + · · ·+N,

and if we set these factors:

(x+ α)(x+ β)(x+ γ)(x+ δ) · · ·

then it is immediately clear that the number of these factors must be equal

to the exponent n; and therefore the number of all the roots, which will be

x = −α, x = −β, x = −γ, x = −δ, . . . ,

will also equal this same exponent n, since a product such as

(x+ α)(x+ β)(x+ γ)(x+ δ) · · ·

cannot become equal to zero unless one of its factors vanishes. Every equation

then, of whatever degree, will always have as many roots as the exponent of

its highest power contains units.
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3. Now it very often happens that not all of these roots are real quantities,

and that some, or perhaps all, are imaginary quantities. We call a quantity

imaginary when it is neither greater than zero, nor less than zero, nor equal

to zero. This will be then something impossible, as for example
√
−1, or in

general a + bi, since such a quantity is neither positive, nor negative, nor

zero. So in this equation

x3 − 3xx+ 6x− 4 = 0

which has these three roots

x = 1, x = 1 +
√
−3, x = 1−

√
−3,

the last two are imaginary, and there is only one real root, x = 1. From

this we see that if we wish to include under the name of roots only those

which are real, their number would often be much smaller than the highest

exponent in the equation. And therefore when we say that every equation

has as many roots as its degree exponent indicates, that must be understood

to include all the roots, both real and imaginary.

4. We imagine then, that whatever the degree of the given equation,

xn +Axn−1 +Bxn−2 + Cxn−3 + · · ·+N = 0,

it can always be represented by a form such as

(x+ α)(x+ β)(x+ γ)(x+ δ) · · · (x+ ν) = 0,

where the number of these simple factors is n. And since these factors when

explicitly multiplied together must produce the given equation, it is evident

that the quantities A, B, C, D, . . . , N will be determined by the quantities

α, β, γ, δ, . . . , ν, in such a way that we will have

A = the sum of these quantities α, β, γ, δ, . . . , ν,

B = the sum of all their products taken two at a time,

C = the sum of all their products taken three at a time,

D = the sum of all their products taken four at a time,

...

and finally

N = the product taken all together, αβγδ · · · ν.

And since the number of these equalities is n, the values of the letters α, β,

γ, δ, . . . , ν will, conversely, be determined by them.
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5. Although it seems that knowledge of imaginary roots might not have any

use, considering that they do not provide any solution to whatever problem

there may be, nevertheless it is very important in all of analysis to become

familiar with the calculation of imaginary quantities. For not only will we

acquire from it a more perfect knowledge of the nature of equations, but

analysis of the infinite will derive very considerable benefit from it. For each

time it comes up that we must integrate a fraction, it is necessary to resolve

the denominator into all its simple factors, be they real or imaginary, and

from there we finally derive the integral, which although it contains imaginary

logarithms, we have the means to reduce them to arcs of real circles. Besides

that, it often happens that an expression which contains imaginary quantities

is nevertheless real, and in these cases calculation with imaginary quantities

is absolutely necessary.

6. It is shown in algebra that when an equation has imaginary roots, their

number is always even, so that every equation either has no imaginary roots

at all, or else it has two of them, or else four, or six, or eight, etc., and never

can the number of all the imaginary roots of an equation be odd. But we

further hold that the imaginary roots pair up in such a way that both the

sum and the product of the two become real. Or what comes to the same

thing, if

x+ yi

is one of the imaginary factors of an equation, we hold that there will be

found among the others a factor

x− yi,

also imaginary, which when multiplied by the former x + yi gives a real

product. The product of x+ yi and x− yi is equal to xx+ yy, and the sum

is equal to 2x, so it is clear that both are real quantities.

7. To make this clearer, let 2m be the number of simple imaginary factors

of an arbitrary equation, since we know that the number is even, and we

hold that one can always arrange these factors in pairs so that their products

become real. So these imaginary factors numbering 2m are reduced to real

factors numbering m, and these latter factors will no longer be simple, but

of the form
xx+ px+ q,

so they will be of the second degree. We say then that every equation which

cannot be resolved into simple real factors always has real factors of the

second degree. However nobody, as far as I know, has yet proved sufficiently
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rigorously the truth of this sentiment. I will try therefore to give it a proof

which would not be subject to any exception.

8. First, it is evident that when an equation has only two simple imaginary

factors, their product is necessarily real. Because the product of these two

factors multiplied by the product of all the others, which we suppose to be

real, must produce the given equation, that is to say a real quantity, which

would be impossible if the product of the two imaginary factors were not

real. We see, moreover, that if an equation has four imaginary roots, all

the others being real, the product of these four imaginary factors will also

be real. And in general whatever the number of imaginary factors of an

equation, their product must necessarily be a real quantity; so if the number

of imaginary factors of an equation is equal to 2m, the product of all these

factors multiplied together will be of this form

x2m + ax2m−1 + bx2m−2 + cx2m−3 + · · · ,

where all the coefficients a, b, c, etc. are real quantities.

9. It is necessary therefore to begin by proving that an equation of the

fourth degree

x4 + ax3 + bx2 + cx+ d = 0

of which all the roots are imaginary, is always resolvable into two real factors

of the second degree

(xx+ px+ r)(xx+ qx+ s) = 0,

because if all the roots are real, or two at least, such a resolution will not

present any difficulty. But if all four are imaginary, the thing is not only

less evident, but there are even cases which would not seem to admit such a

resolution. A very wise geometer once suggested to me this equation

x4 + 2x3 + 4x2 + 2x+ 1 = 0

by which he wished to prove that the resolution into two real factors was not

always possible. And indeed it seems at first very difficult to combine these

four simple imaginary factors pairwise so that their products become real.

10. The doubt raised by this equation is too important for me to skip

over it by giving a general proof of the matter in question, so I will carefully

develop this case before undertaking this proof. So first, since the coefficients

of this equation are 1, 2, 4, 2, 1, and take the same order starting from the

front or the back, it is certain that the given equation is resolvable into two

factors of this form
xx+ px+ 1, xx+ qx+ 1,
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whose product

x4 + (p+ q)x3 + (pq + 2)x2 + (p+ q)x+ 1,

when compared with the given form

x4 + 2x3 + 4x2 + 2x+ 1

furnishes these two equalities

p+ q = 2

pq + 2 = 4, or pq = 2.

Then we will have

(p− q)2 = (p+ q)2 − 4pq = 4− 4 · 2 = −4

and therefore

p− q =
√
−4 = 2i

from which we derive these values

p = 1 + i and q = 1− i,

so that the given equation

x4 + 2x3 + 4x2 + 2x+ 1 = 0

is now reduced to these two factors of the second degree

(xx+ (1 + i)x+ 1) (xx+ (1− i)x+ 1) = 0,

which are in truth imaginaries.

11. But to decide whether or not it is possible to reduce this equation to

two real factors of the second degree, it is necessary to look to its four simple

factors, in order to see whether we can recombine them in pairs, so as to get

two real products. The first double factor, xx+ (1+ i)x+ 1, gives these two

simple factors

x+ 1
2 (1 + i) + 1

2

√
2i− 4 = 0,

x+ 1
2 (1 + i)− 1

2

√
2i− 4 = 0,

and the other double factor, xx+ (1− i)x+1, gives these two simple factors

x+ 1
2 (1− i) + 1

2

√
−2i− 4 = 0,

x+ 1
2 (1− i)− 1

2

√
−2i− 4 = 0.
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It is a question then, of seeing whether or not the first simple factor multiplied

by the third or the fourth produces a double real factor, since we already see

that the product of the first and the second is imaginary.

12. However it is not so easy to recognize whether the products we get by

these multiplications of the first factor by the third or by the fourth are real

or imaginary, and the difficulty arises from the imaginary terms
√
2i− 4 and√

−2i− 4, the imaginary parts of which we cannot compare with those of

the other numbers 1 + i and 1 − i. I note that the formula
√
2i− 4 can be

reduced to the form u+vi, and then the other formula
√
−2i− 4 will become

equal to u− vi. For making these equalities
√
2i− 4 = u+ vi

and
√
−2i− 4 = u− vi

and taking the squares, we will obtain these

2i− 4 = uu− vv + 2uvi

and

−2i− 4 = uu− vv − 2uvi,

from which we will derive

−4 = uu− vv and 2i = 2uvi,

or
vv − uu = 4 and uv = 1.

And then we will form

(vv + uu)2 = (vv − uu)2 + 4uuvv = 16 + 4 = 20,

so that

vv + uu =
√
20 = 2

√
5.

From that we will at last find

vv =
√
5 + 2 and uu =

√
5− 2

and consequently

v =
√√

5 + 2 and u =
√√

5− 2.

13. These two values v and u being real, let us substitute them into the

expressions for the four simple factors found above, and these factors will
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become

I. x+ 1
2 (1 + i) + 1

2 (u+ vi) = x+ 1
2 (1 + u) + 1

2 (1 + v)i,

II. x+ 1
2 (1 + i)− 1

2 (u+ vi) = x+ 1
2 (1− u) + 1

2 (1− v)i,

III. x+ 1
2 (1− i) + 1

2 (u− vi) = x+ 1
2 (1 + u)− 1

2 (1 + v)i,

IV. x+ 1
2 (1− i)− 1

2 (u− vi) = x+ 1
2 (1− u)− 1

2 (1− v)i.

It is now clear that the product of the first by the third actually becomes

real, as well as that of the second by the fourth. For we will have

product of I by III =
(
x+ 1

2 (1 + u)
)2

+ 1
4 (1 + v)2,

product of II by IV =
(
x+ 1

2 (1− u)
)2

+ 1
4 (1− v)2.

We see then that the given equation

x4 + 2x3 + 4x2 + 2x+ 1 = 0

reduces to these two real factors of the second degree:

xx+ (1 + u)x+ 1
2 + 1

2 (u+ v) + 1
4 (vv + uu) = 0,

xx+ (1− u)x+ 1
2 − 1

2 (u+ v) + 1
4 (vv + uu) = 0,

where

v =
√√

5 + 2, u =
√√

5− 2

and

vv + uu = 2
√
5.

14. This example leads us to a more general problem, which will not fail

to considerably enlighten us on the subject in question.

This problem considers this more general fourth-degree equation

x4 + ax3 + (b+ 2)xx+ ax+ 1 = 0,

which we must resolve into two double factors, or factors of the second degree,

which must be real.
Let us first set these two factors in the following form

(xx+ px+ 1)(xx+ qx+ 1) = 0

and we see first that it is necessary that

p+ q = a and pq = b,
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from which we will derive

p =
a+

√
aa− 4b

2
and q =

a−
√
aa− 4b

2
.

So whenever aa > 4b the problem is solved, considering that the two assumed

factors become real.

15. But when aa < 4b, these two factors will be imaginary, and will not

satisfy the question. In this case it is necessary to consider the simple factors,

which will be

I. x+ 1
2p+

1
2

√
pp− 4 = 0,

II. x+ 1
2p−

1
2

√
pp− 4 = 0,

III. x+ 1
2q +

1
2

√
qq − 4 = 0,

IV. x+ 1
2q −

1
2

√
qq − 4 = 0.

Let us set 4b = aa+ cc, since aa < 4b, and we will have

p =
a+ ci

2
and q =

a− ci

2
,

so √
pp− 4 = 1

2

√
aa− cc− 16 + 2aci

and √
qq − 4 = 1

2

√
aa− cc− 16− 2aci.

Since these two formulas are imaginary, let
√
aa− cc− 16 + 2aci = u+ vi

and √
aa− cc− 16− 2aci = u− vi

and from this we will derive

uu− vv = aa− cc− 16 and uv = ac.

16. These equalities give us

(uu+ vv)2 = (aa− cc− 16)2 + 4aacc = (aa+ cc)2 − 32(aa− cc) + 256,

so

vv + uu =
√
(aa+ cc)2 − 32(aa− cc) + 256.

Since this irrational quantity has the sum of two squares under the radical

sign, it will always be real, and its value will even be greater than both

aa− cc− 16 = uu− vv and vv − uu = 16 + cc− aa.
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We will therefore have the following real values for v and u:

v =

√√
(aa+ cc)2 − 32(aa− cc) + 256 + 16 + cc− aa

2
,

u =

√√
(aa+ cc)2 − 32(aa− cc) + 256− 16− cc+ aa

2
,

and substituting for cc its value 4b− aa, we will have

v =

√√
4bb− 16(aa− 2b) + 64 + 8 + 2b− aa,

u =

√√
4bb− 16(aa− 2b) + 64− 8− 2b+ aa,

or

v =

√
2
√
(b+ 4)2 − 4aa+ 8 + 2b− aa,

u =

√
2
√
(b+ 4)2 − 4aa− 8− 2b+ aa.

17. Having found these real values for v and u in the case where 4b > aa

or 4b = aa+ cc, our four simple imaginary factors will be

I. x+ 1
4 (a+ ci) + 1

4 (u+ vi) = x+ 1
4 (a+ u) + 1

4 (c+ v)i,

II. x+ 1
4 (a+ ci)− 1

4 (u+ vi) = x+ 1
4 (a− u) + 1

4 (c− v)i,

III. x+ 1
4 (a− ci) + 1

4 (u− vi) = x+ 1
4 (a+ u)− 1

4 (c+ v)i,

IV. x+ 1
4 (a− ci)− 1

4 (u− vi) = x+ 1
4 (a− u)− 1

4 (c− v)i,

from which it is clear that the products of factors I by III, and of II by IV,

are real, becoming

xx+ 1
2 (a+ u)x+ 1

16 (aa+ cc) + 1
16 (uu+ vv) + 1

8 (au+ cv),

xx+ 1
2 (a− u)x+ 1

16 (aa+ cc) + 1
16 (uu+ vv)− 1

8 (au+ cv),

where it must be noted that

aa+ cc = 4b

and

vv + uu = 4
√

(b+ 4)2 − 4aa.
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18. To express more conveniently the value of au + cv, let us look to the
square, aauu+ ccvv + 2acuv:

aauu = 2aa
√
(b+ 4)2 − 4aa− 8aa− 2aab+ a4,

ccvv = (8b− 2aa)
√

(b+ 4)2 − 4aa+ 32b+ 8bb− 4aab− 8aa− 2aab+ a4,

2acuv = 2aacc = 8aab− 2a4,

so we will have

(au+ cv)2 = 8b
√
(b+ 4)2 − 4aa+ 32b− 16aa+ 8bb

and the square root will be found to be

au+ cv = 2

√
2bb+ 8b− 4aa+ 2b

√
(b+ 4)2 − 4aa

and therefore the two real factors sought will be, in the case of 4b > aa,

xx+ 1
2ax+ 1

2x

√
2
√
(b+ 4)2 − 4aa− 8− 2b+ aa

+1
4b+

1
4

√
(b+ 4)2 − 4aa+ 1

4

√
2bb+ 8b− 4aa+ 2b

√
(b+ 4)2 − 4aa,

and

xx+ 1
2ax− 1

2x

√
2
√
(b+ 4)2 − 4aa− 8− 2b+ aa

+1
4b+

1
4

√
(b+ 4)2 − 4aa− 1

4

√
2bb+ 8b− 4aa+ 2b

√
(b+ 4)2 − 4aa.

19. By this particular case one will more easily understand what I want

to prove in general: that an equation of arbitrary degree is always resolvable

into real factors, either simple or double. Or since two simple factors joined

together produce a double factor, we must show that every equation of even

degree, as

x2m +Ax2m−1 +Bx2m−2 + · · ·+N = 0,

is resolvable into m real double factors of the form xx+ px+ r, and that an

equation of odd degree, as

x2m+1 +Ax2m +Bx2m−1 + · · ·+N = 0,

has first one simple real factor, and then m double factors which are also all

real. For this purpose I will develop the following propositions, which will

lead to the proof of what I just advanced.



Imaginary Roots of Equations 11

Theorem 1.

20. Every equation of odd degree, whose general form is

x2m+1 +Ax2m +Bx2m−1 + Cx2m−2 + · · ·+N = 0,

always has at least one real root, and if it has more than one, their number

will be odd.

Proof
Let us set

x2m+1 +Ax2m +Bx2m−1 + · · ·+N = y

and consider the curve expressed by this equation. It is evident that each

abscissa x corresponds to only a single ordinate y, which will always be real,

and that at the place where the ordinate y vanishes, the value of the abscissa

x will be a root of the given equation. So this equation will have as many

real roots as there are places where the ordinate y vanishes, which happens

where the curve crosses the axis of the abscissas. And so the number of real
roots will be equal to the number of intersections of the curve with the axis on

which we take the abscissas. To judge then the number of these intersections,

let us first set the abscissa x positive and infinitely large, or x = ∞, and it

is clear that it will then become

y = ∞2m+1 = ∞,

from which it follows that the branch of the curve corresponding to the

infinitely positive abscissas is found above the axis, since their ordinates y

are positive. Now setting the negative and also infinite abscissas, or x = −∞,

we will have

y = (−∞)2m+1 = −∞,

so the ordinates here will be negative, and the branch of the curve will be

found below the axis. This branch is continuous with the other one situated
above the axis, so it is absolutely necessary that the curve cross some part of

the axis, and if it crosses at several points, the number of these points must

be odd. From this it follows that the given equation will necessarily have

at least one real root, and if it has more, their number will always be odd.

Q.E.D.

Corollary

21. Therefore, since the number of all the roots of the given equation is

equal to 2m+ 1, or odd, and the number of real roots is also odd, it follows

that the number of imaginary roots, if there are any, will always be even.
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Theorem 2.

22. Every equation of even degree, whose general form is

x2m +Ax2m−1 +Bx2m−2 + · · ·+N = 0,

either has no real roots at all, or if it has real roots, their number will always

be even.

Proof
Let us consider again the curve expressed by this equation

x2m +Ax2m−1 +Bx2m−2 + · · ·+N = y,

which consists of only a single continuous line, since at each abscissa x there

always corresponds a single ordinate. Let us set x = +∞, and we will again

have
y = +∞,

so the branch of the curve corresponding to the infinitely positive abscissas

will be situated above the axis. Now setting x = −∞, we will similarly have

y = (−∞)2m = +∞,

so that the branch of the curve corresponding to the infinitely negative ab-

scissas will also be found above the axis. Therefore it will be possible that

the curve does not cross any part of the axis of abscissas; and if it does pass

over some part of the axis in order to descend into the region below, it must

pass over it again in order to return to the region above. Consequently, if the

curve crosses the axis, it must be that the number of all the intersections is

even. Therefore, since each intersection gives a real root of the given equa-

tion, it follows that either it will not have any real roots at all, or if it has

some, their number will always be even. Q.E.D.

Corollary

23. Since the number of all the roots, both real and imaginary, of the given

equation is 2m, and therefore even, and since the number of the real roots,

if it has any, is also even, it follows that the number of the imaginary roots,

if it has any, is also even.

Scholium

24. These two theorems with their proofs are already so well known that I

would have been able to report them here without explaining them in detail.

But since they involve the foundation of the whole theory—the number of

all the imaginary roots of an arbitrary equation is always even—I believed

it necessary to derive them from the beginning, and this all the more so
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because the following theorem, which is not as generally known, requires a

similar proof.

Theorem 3.

25. Every equation of even degree where the last term, or constant, has a

negative value, as

x2m +Ax2m−1 +Bx2m−2 + · · · −OO = 0,

always has at least two real roots, one positive and the other negative.

Proof
Set

x2m +Ax2m−1 +Bx2m−2 + · · · −OO = y,

in order to consider the curve expressed by this equation. We have just seen

that this curve extends on both sides to infinity above the axis. Now by

setting x = 0 we will have

y = −OO,

and therefore the point of the curve which corresponds to x = 0 will be below

the axis, so it is necessary that the curve cross the axis on both sides of this

point, in order to rise above. So since each intersection gives a real root of

the given equation, and since one of these two intersections must correspond

to a positive abscissa x and the other a negative, it is certain that the given

equation will have at least two real roots, one positive and the other negative.

Q.E.D.

Corollary

26. This proof makes us also understand that when an equation like the

given one has several real positive roots, their number will be odd, and the

number of negative real roots will be odd as well.

Theorem 4.

27. Every fourth-degree equation, as

x4 +Ax3 +Bx2 + Cx+D = 0,

can always be decomposed into two real factors of the second degree.

Proof
We know that setting x = y − 1

4A will change this equation into another

of the same degree, where the second term is absent; and because this trans-

formation can always be done, let us suppose that in the given equation the

second term is already absent, and that we will have this equation

x4 +Bx2 + Cx+D = 0
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to resolve into to real factors of the second degree. It is first clear that these

two factors will be of this form

(xx+ ux+ α)(xx− ux+ β).

Comparing the product with the given equation, we will have

B = α+ β − uu, C = (β − α)u, D = αβ,

from which we will derive

α+ β = B + uu, β − α =
C

u
,

and therefore

2β = uu+B +
C

u
and 2α = uu+B − C

u
.

Then having 4αβ = 4D, we will obtain this equation

u4 + 2Buu+BB − CC

uu
= 4D

or

u6 + 2Bu4 + (BB − 4D)uu− CC = 0,

from which it is necessary to look for the value of u. Since the constant

term −CC is strictly negative, we just proved that this equation has at least

two real roots. So taking one or the other for u, the values α and β will be

likewise real, and consequently the two assumed factors of the second degree,

xx+ ux+ α and xx− ux+ β, will be real. Q.E.D.

Corollary 1.

28. Every expression then of the fourth degree,

x4 +Ax3 +Bx2 + Cx+D,

although all its four simple factors may be imaginary, can always be decom-

posed into two real factors of the second degree. Or indeed each of the four

simple factors has among the others its companion, and when multiplied by

it, it produces a real product.

Corollary 2.

29. And, if an expression of arbitrary degree has only four simple imagi-

nary factors, since their product is real and of the form x4 + Ax3 + Bx2 +

Cx+D, it is also certain that this product is resolvable into two real factors

of the second degree, each of which contains two simple imaginary factors.
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Corollary 3.

30. From this it is also evident that an arbitrary equation of the fifth

degree is always resolvable into three real factors, one of which is simple and

the two others double, or of second degree. For this equation has a real root,

and so will have a simple real factor, and the other factor will be of the fourth

degree, and so can be decomposed into two double real factors.

Corollary 4.

31. The resolution of equations into real factors, either simple or double,

is therefore proved for equations of the fifth degree and for all the lesser

degrees. But this theorem is not sufficient to prove this resolution for any

greater degree, unless the number of imaginary roots is smaller than 6. For

then the number would be either 4, or 2, or 0, and in all these cases it is

evident that this resolution is possible.

Scholium 1.

32. I already proved above that this equation of the fourth degree

x4 + ax3 + (b+ 2)x2 + ax+ 1 = 0,

which is only a special case of the general for this degree, which I just con-

sidered here, is always resolvable into two real factors of the second degree.

This resolution, which was quite troublesome in the case of 4b > aa, can be

immediately deduced by the method used in this theorem, without regard

to the form of the imaginary roots. This use seems to me important enough

that I apply the general resolution to this case. To avoid fractions let us set

a = 4c and b > 4cc, so that the equation to resolve is

x4 + 4cx3 + (b+ 2)xx+ 4cx+ 1 = 0.

Now, to remove the second term set x = y− c and our equation will take this

form

y4 + (2 + b− 6cc)y2 + (8c2 − 2bc)y + 1− 2cc+ bcc− 3c4 = 0.

We suppose the real factors of the second degree to be

(yy + uy + α)(yy − uy + β) = 0,

and because

B = 2 + b− 6cc, C = 8c2 − 2bc, and D = 1− 2cc+ bcc− 3c4,

in order to find u we will have this equation to resolve

u6+(4+2b− 12cc)u4+(bb+4b− 16bcc− 16cc+48c4)u2− 4cc(4cc− b)2 = 0,
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which when divided by uu+ b− 4c gives

u4 + (4 + b− 8cc)u2 + 16c4 − 4bcc = 0.

The first factor, uu + b − 4cc, when set to zero gives only imaginary values

for u, because b > 4cc. So it is necessary to look to the other equation for a

real value, and we derive

uu = −2− 1
2b+ 4cc±

√
(2 + 1

2b)
2 − 16cc,

and the real value of u will be

u =

√√
(2 + 1

2b)
2 − 16cc− 2− 1

2b+ 4cc

or putting aa for 16cc

u = 1
2

√
2
√
(b+ 4)2 − 4aa− 8− 2b+ aa,

from which we find the same factors that were attributed above.

Scholium 2.

33. The force of the proof of this theorem comes down to the unknown

u being determined by an equation of the sixth degree, and the last term

of this equation being strictly negative. Both of these two characteristics

can be discovered through pure reasoning, without even having to look for

the equation that contains the unknown u. Therefore, since in what follows,

where I will go on to equations of higher degree, it would be very difficult and

even impossible to find the equation by which the unknown u is determined,

it will be important to discover these two mentioned characteristics through

pure reasoning for the given equation of the fourth degree, in order to clear

the way for using this same reasoning when the proposed equation will be of

a higher degree.

So let the given equation be already cleared of the second term

x4 +Bx2 + Cx+D = 0,

and set the four roots of this equation to

x = a, x = b, x = c, x = d,

and it is clear first that the sum of these four roots

a+ b+ c+ d

will be equal to zero.
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Next, setting one of the general double factors of this equation to zero

xx− ux− β = 0

it is certain that u will be the sum of two arbitrary roots out of the four

specified a, b, c, d. Therefore this letter u regarded as our unknown can have

as many different values as there are distinct combinations of two letters

taken from these four a, b, c, d. This number of combinations is, as we know,

equal to 4·3
1·2 = 6, and so the letter u is susceptible to 6 different values, and

no more. Therefore, the letter u will be determined by an equation of the

sixth degree, which will have the following six roots

I. u = a+ b,

IV. u = c+ d,

II. u = a+ c,

V. u = b+ d,

III. u = a+ d,

VI. u = b+ c.

So since a+ b+ c+ d = 0, if we set the first three of these six roots

I. u = p, II. u = q, III. u = r,

then the last three will be

IV. u = −p, V. u = −q, VI. u = −r,

so that the negative of each value of u will also be a value of u.

Knowing now these six roots, the equation which furnishes them all will

be
(u− p)(u− q)(u− r)(u+ p)(u+ q)(u+ r) = 0,

or by combining pairs where one is the negative of the other, we will have

(uu− pp)(uu− qq)(uu− rr) = 0,

which will give an equation of the sixth degree where all the odd powers are

absent, just as we found in the proof of this theorem.

But I observe, furthermore, that the last constant term of this equation

will be equal to
−pp · −qq · −rr = −ppqqrr,

which is then a square with the negative sign, so it is strictly negative. From

this it follows that this equation will necessarily have at least two real roots,

and one or the other taken for u will give a real double factor of the given

equation. We see, then, another proof of the given theorem, which will be

similar to those of the theorems which follow.
One will no doubt object that I have assumed here that the quantity pqr

is a real quantity, and that its square, ppqqrr, is positive, and that this is still

uncertain, considering that the roots a, b, c, d are imaginary, and it might

well happen that the square of the quantity pqr, being composed of them, is
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negative. To this I respond that this case can never occur, because however

imaginary be the roots a, b, c, d, we nevertheless know that we must have

a+ b+ c+ d = 0,

ab+ ac+ ad+ bc+ bd+ cd = B,

abc+ abd+ acd+ bcd = −C,

abcd = D,

these quantities B, C, D, being real. But since

p = a+ b,

q = a+ c,

r = a+ d,

their product

pqr = (a+ b)(a+ c)(a+ d)

is determinable, as we know, by the quantities B, C, D, and will consequently

be real. Just as we have seen, it is actually

pqr = −C and ppqqrr = CC

We will easily recognize as well that in the higher equations this same char-

acteristic must occur, and that one could not object on this basis to the

following theorems.

Theorem 5.

34. Every equation of degree 8 is always resolvable into two real factors of

the fourth degree.

Proof
After eliminating the second term, the given degree 8 equation will have

this form

x8 +Bx6 + Cx5 +Dx4 + Ex3 + Fx2 +Gx+H = 0,

of which the two general fourth-degree factors will be

x4 − ux3 + αx2 + βx+ γ = 0,

x4 + ux3 + δx2 + ϵx+ ζ = 0.

If we equate the product of these two factors to the given equation, we will ob-

tain seven equalities, which is to say precisely as many as there are unknown

coefficients u, α, β, γ, δ, ϵ, ζ. From these equalities we will successively

eliminate the letters α, β, γ, δ, ϵ, ζ, which can always be done, as we know,

without having to extract any roots, so that the values of these letters will

all be real expressions of the known quantities B, C, D, E, F , G, H, and
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the unknown u, and so finally we will reach one equation that will contain

only the unknown u along with the known quantities, from which we must

find the value of u. And this value having been found to be real, the values

of the eliminated letters α, β, γ, etc. will also be real, and therefore the two

assumed fourth-degree factors likewise real.

It is a question, then, of finding the equation which determines for us

the value of u. In general u will express the sum of four arbitrary roots of

the given equation, of which the number of all the roots is equal to eight,

and so the letter u will have as many different values as there are various

combinations of four roots taken from the eight of the equation. Thus the

number of all the values of u will be equal to 8·7·6·5
1·2·3·4 = 70, and therefore the

unknown u will be determined by an equation of degree 70. Moreover, if we

suppose that p is one of the values of u, p will be the sum of some four roots

of the given equation, and the sum of the other four will be equal to −p,

since the sum of all eight roots is equal to zero. Thus if u − p is a factor of

the degree 70 equation, u+p will also be one, and therefore joining these two

factors together, uu− pp will be a double factor, or a second degree factor of

the above-mentioned equation of degree 70. Consequently, this equation will

have 35 factors of the form uu− pp, or it will be a product such as

(uu− pp)(uu− qq)(uu− rr)(uu− ss) · · ·

the number of these factors being equal to 35. So the last or constant term of

this equation will be the product of 35 negative squares, and consequently also

a negative square like−ppqqrrss etc., because the number 35 is odd. The root

of this square, pqrs etc., is a real quantity determinable by the coefficients B,

C, D, E, etc. of the given equation, and therefore its square, ppqqrrss etc.,

a positive quantity. So the unknown coefficient u being determined by an

equation of degree 70 whose last term is strictly negative, this equation will

have at least two real values, of which one being put for u will furnish a real

factor of the fourth degree of the given equation, which will consequently be

resolvable into two real factors of the fourth degree. Q.E.D.

Corollary 1.

35. Since each factor of the fourth degree is resolvable into two real factors

of the second degree, it follows that every equation of degree 8 is always

resolvable into four real factors of the second degree of the form xx+ px+ q.

Corollary 2.

36. We also see that every equation of the ninth degree is resolvable into

a simple real factor and four double or second-degree factors, also real.
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Corollary 3.

37. This proposition makes us also see that the same resolution into real

factors, either simple or double, must also occur in all equations of the sixth

or seventh degree. For we only have to multiply such an equation either by

x or by xx, to reduce it to degree 8.

Scholium 1.

38. Having multiplied an equation of the sixth degree by xx, in order to

get one of degree 8, the two fourth-degree factors of the latter will contain

this multiplier xx, which we will consequently have to remove in order to

get the factors of the given sixth-degree equation. It will happen either

that one of the two fourth-degree factors will contain xx, or else that each

of them will contain x. In the first case we will have after division by xx

a real second-degree factor and one of the fourth, which being separated

by two from the second, we will have the three double factors of the given

equation. And in the second case, dividing each factor by x, we will obtain

two real third-degree factors, each containing a simple real factor, so that in

either case the equation of the sixth degree is resolved into real factors, either

simple or double. We will see furthermore that the seventh-degree equations

are likewise resolvable into such factors, since we know that these equations

always have a simple real factor, dividing by which they will be reduced to

equations of the sixth degree.

Scholium 2.

39. It seems still uncertain whether after having found a real value for

u, the other coefficients α, β, γ, δ, etc. will also be determined by a real

expression, seeing that it could happen that some might contain irrational

quantities, which might become imaginary. But to lift this doubt, we only

have to regard u as an already-known quantity, so that the number of the

equalities to satisfy surpasses by one the number of the unknowns α, β,

γ, δ, etc. which we are to determine. So we will eliminate one of these

quantities after another, as this can be done without extracting any roots.

Doing this, there will remain a certain number of equalities, and the number

of the unknowns will be one less. Let us suppose that there still remains to

determine several unknowns, each of which rises in the equations to several

dimensions. In this case we can always combine two equalities together in

such a way that it results in one where the unknown to determine will not have

more than one dimension, and from there we will derive its value by a rational

expression. Following this method, we will end up with two equalities that
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contain the last unknown quantity, and to whatever height it rises there, we

have in algebra the means to develop them by way of combination with other

equations, where the powers of the unknown will be successively decreased,

and finally we will get one equation, in which will be found only the first

power of the unknown, which will consequently be determined by a rational

expression; which when substituted in the values of the other coefficients

already found, will also furnish rational expressions for these. So when we

will have found for u a real value, the values of all the other coefficients will

become also necessarily real.

Theorem 6.

40. Every equation of degree 16 is always resolvable into two real factors

of degree 8.

Proof
After eliminating the second term of the equation, it will have this form

x16 +Bx14 + Cx13 +Dx12 + · · · = 0

and the number of the coefficients B, C, D, etc. will be 15. Assuming then

its two factors of degree 8 to be

x8 − ux7 + αx6 + βx5 + γx4 + δx3 + ϵx2 + ζx+ η = 0,

x8 + ux7 + θx6 + ιx5 + χx4 + λx3 + µx2 + νx+ ξ = 0,

if we equate the product of these two factors to the given equation, we will

obtain 15 equalities, from which it is necessary to look for the values of the

coefficients u, α, β, γ, δ, etc., whose number is also 15, so that the problem

is determinate. Therefore, if we from the start regard the coefficient u as

known, we will have one equality more than the number of unknowns α, β,

γ, etc., and so we will be able to derive from them their values determined by

u and B, C, D, E, etc. without having to extract any roots. These values will

therefore be rational and consequently also real, provided that we have a real

value for the coefficient u. So it all comes down to showing that it is always

possible to find a real value for the coefficient u. Now, having successively

eliminated all the letters α, β, γ, δ, etc., we will finally reach one equation

composed of the known coefficients B, C, D, E, etc. and of the unknown u,

which will rise to a degree that we will derive by this reasoning. Since the

quantity u indicates in general the sum of 8 arbitrary roots taken from 16

roots of the given equation, it is clear by the rules of combinations that the

quantity u is susceptible to as many different values as there are units in this
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formula
16 · 15 · 14 · 13 · 12 · 11 · 10 · 9

1 · 2 · 3 · 4 · 5 · 6 · 7 · 8
= 12870.

Therefore, the equation which will determine the values of the unknown u

will necessarily be of degree 12870. Since the sum of all 16 of the roots of the

given equation is zero, if the sum of 8 arbitrary ones (that is to say one value

of u) is p, then the sum of the 8 others will be −p, and so −p is also a value

of u. Indeed, if u − p is a factor of the equation which determines u, then

u+ p will also be a factor of it, and so their product uu− pp, containing the

two roots p and −p will also be a factor of it. Consequently, this equation is

composed of 1
2 · 12870 = 6435 factors of the form uu − pp, or it will be the

product of factors such as

(uu− pp)(uu− qq)(uu− rr)(uu− ss) · · · = 0,

the number of these factors being 6435. Since this number is odd, the last

or constant term of this equation will be −ppqqrrss etc. Putting then pqrs

etc. equal to P , it is certain that P is determinable by the coefficients B,

C, D, E, etc., so that it is a rational function of them, and therefore real.

So the last term of our equation, which must serve to determine u, will be

equal to −PP , which is to say it will be strictly negative. From this it follows

that this equation will necessarily have at least two real roots, one positive

and the other negative, which consequently being taken for +u and −u will

furnish two real factors of degree 8 for the given equation. Q.E.D.

Corollary 1.

41. So since each of these two factors of degree 8 is resolvable into four

factors of the second degree, it is clear that every equation of degree 16 is

resolvable into 8 double real factors; and an equation of degree 17, which

certainly has a simple real factor, will have besides that 8 more double real

factors.

Corollary 2.

42. The same resolvability into real factors, either simple or double, will

also occur in all equations of a degree inferior to 16. For by multiplying such

an equation by x or x2 or x3, etc. in order to elevate it to degree 16, we will

look to it for its 8 double real factors, then by removing the factors x which

were introduced by the multiplication, we will have the real factors of the

given equation, which will be either simple or double.
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Corollary 3.

43. It is therefore proved that every equation which does not surpass degree

17 is always resolvable into real factors, either simple or double.

Scholium

44. If we examine the force of these proofs, we will find that it consists

in the final equation, which contains the sole unknown u, becoming of even

degree, and in its last term being a negative square. This is what happened

in the resolution of the equations of degree 4, 8, and 16. We will notice,

furthermore, that the latter situation with the negative constant term cannot

occur unless the degree exponent of the equation with u is an even number

2n such that half of it, n, is an odd number; because the last term is the

product of n negative squares, and so it would become positive, if n were

an even number. And this is the reason that our proof cannot be applied to

equations of degree 12 or 20; because if we wanted to operate in this same

manner on an equation for example of degree 20, by decomposing it into two

factors of degree 10, as

x10 + ux9 + · · · and x10 − ux9 + · · ·
after having eliminated the second term, we would see that the quantity u

would have to be determined by an equation of degree

20 · 19 · 18 · 17 · 16 · 15 · 14 · 13 · 12 · 11
1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10

= 4 · 11 · 13 · 17 · 19,

half of which, being still an even number, would produce a positive final term

for the equation, and we would no longer be able to draw the conclusion we

need. Now, however much we reflect on this situation, we will find that the

last term must necessarily become negative only when the given equation is

of a degree where the exponent is a power of 2, and therefore the manner

of proof that serves me here will have a place only for equations of degree

32, 64, 128, etc. But these cases are sufficient for our purpose, since having

proved the resolvability into real factors for equations of whatever degree, it

also follows for all the equations of a lesser degree.

Theorem 7.

45. Every equation whose degree exponent is a binary power like 2n, where

n is a whole number greater than 1, is resolvable into two real factors of

degree 2n−1.
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Proof
After eliminating the second term, the equation in question will be of this

form

x2n +Bx2n−2 + Cx2n−3 +Dx2n−4 + · · · = 0,

where the number of coefficients B, C, D, etc. is 2n − 1. Let us now assume

that the two factors sought are

x2n−1

− ux2n−1−1 + αx2n−1−2 + βx2n−1−3 + · · · = 0,

x2n−1

+ ux2n−1−1 + λx2n−1−2 + µx2n−1−3 + · · · = 0,

where the number of coefficients to determine u, α, β, etc. is also 2n − 1.

The comparison of the product of these two factors with the given equation

furnishes just as many equalities, so that all the letters α, β, γ, etc. may be

determined by a real expression of the knowns B, C, D, etc. and u, without

extracting any roots. So in the end, to determine the unknown u, we will

reach one equation which will have for its degree exponent

2n(2n − 1)(2n − 2)(2n − 3)(2n − 4) · · · (2n−1 + 1)

1 · 2 · 3 · 4 · 5 · · · 2n−1
,

as we know by the rules of combinations. LetN be this degree exponent of the

equation for u, and by reversing the order of the factors in the denominator,

we will have

N =
2n

2n−1
· 2n − 1

2n−1 − 1
· 2n − 2

2n−1 − 2
· 2n − 3

2n−1 − 3
· 2n − 4

2n−1 − 4
· · · 2

n−1 + 1

1
,

and reducing each fraction to lowest terms:

N = 2 · 2n − 1

2n−1 − 1
· 2

n−1 − 1

2n−2 − 1
· 2n − 3

2n−1 − 3
· 2

n−2 − 1

2n−3 − 1
· · · 2

n−1 + 1

1
.

Now, it is certain that the number N is whole, and since both the product

of the numerators and well as of the denominators are odd, this number will

be oddly even, or its half an odd number. We will have, then, by starting

with the last fraction

1
2N =

2n−1 + 1

1
· 2

n−2 + 1

1
· 2

n−1 + 3

3
· 2

n−3 + 1

1
· 2

n−1 + 5

5
· · · 2n − 1

2n−1 − 1
.

But since the second term of the given equation is absent, if p is one root u,

then −p will also be a root, and therefore uu − pp a double factor, and the

number of all the factors of this form will be equal to 1
2N , which is to say

an odd number. Consequently, the last term of the equation for u will be

a negative square, which is an indicator that this equation contains at least
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two real values, one for u and the other for −u. From this we will form two

real factors of degree 2n−1 of the given equation. Q.E.D.

Corollary 1.

46. Every equation, then, of degree 32 is resolvable into two real factors

of degree 16, and therefore by the preceding theorem also resolvable into 16

real factors of the second degree. This must also be understood to hold for

all the equations below degree 32, which we will be able to decompose into

real factors, either simple or double.

Corollary 2.

47. Next, since every equation of degree 64 is resolvable into two real

factors of degree 32, all equations which do not exceed degree 64 or 65 will

also be resolvable into all real factors, each either simple or double.

Corollary 3.

48. In the same manner, we will extend this resolvability into real factors,

either simple or double, successively to equations of degree 128, 256, 512,

etc., so that it is now certain that every equation, however high its degree, is

always resolvable into real factors, either simple or of the second degree.

Scholium

49. We see, then, a complete proof of the proposition that we commonly

assume in analysis, and principally in integral calculus, by which we claim

that every rational function of a variable x, as

xm +Axm−1 +Bxm−2 + · · ·
can always be resolved into real factors, either simple of the form x + p,

or else double of the form xx + px + q. It is from the possibility of this

resolution that we have derived this beautiful and important consequence:

that the integral of a differential formula such as Pdx
Q , where P and Q indicate

arbitrary rational functions of x, can always be expressed either algebraically,

or by logarithms, or by arcs of the circle. Regarding the solidity of the proof

I just gave of this beautiful property of equations, I believe that one will find

no fault after carefully weighing the remarks which I have added. However, in

case one wanted to have trouble recognizing the correctness of these proofs,

I am going to add several propositions concerning this subject which will not

depend on the preceding, and whose truth will serve to lift any doubt that

one might still have.
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Theorem 8.

50. Every equation of degree 6 has at least one real factor of the second

degree, independently of the preceding proofs.

Proof
Let the given degree 6 equation be

x6 +Ax5 +Bx4 + Cx3 +Dx4 + Ex+ F = 0,

of which an arbitrary double factor is

xx− ux+ v,

and the other factor will therefore be of the fourth degree, as

x4 + αx3 + βx2 + γx+ δ,

and we understand that if one is real, the other must be real also. The

product of these two factors must be equal to the given equation, so we will

obtain 6 equalities from which it is necessary to determine the presumed

coefficients u, v, α, β, γ, δ. This determination can be made, as I have

already noted, by using rational expressions up until the last one, which will

be of the coefficient u, from which it will be necessary to derive the value

from an equation of a certain number of degrees. So if we are able to find

a real value for u, those of the other coefficients α, β, γ, etc. would become

also real, and therefore also the assumed factors themselves. It is a question,

then, of considering the equation which will determine u, in order to see if

it contains real values. Now, it is clear that in general u is the sum of two

arbitrary roots of the given equation, and therefore it will be susceptible to

as many different values as there are units in this formula: 6·5
1·2 = 15. So it is

absolutely necessary that the equation for determining u contain 15 different

values, neither more nor less, and thus this equation will be of degree 15,

which is to say an odd degree. It will therefore surely have a real root, which

when put for u will furnish us a real factor of the second degree, xx−ux+ v,

of the given degree 6 equation. Q.E.D.

Corollary

51. Every equation of degree 6 can always be resolved into two real factors,

one of which is of the second degree, and the other of the fourth degree; and

since the latter is resolvable into two real factors of the second degree, we

will have three double real factors of the degree 6 equation.
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Scholium

52. I assume here that it is possible to resolve an equation of the fourth

degree into two double real factors, though my purpose is to render this

proposition and the several that follow independent of the preceding proofs.

Yet even when we would doubt their solidity, this doubt could center only

upon the equations of degree 8, 16, etc., since the proof for the equations of

the fourth degree is altogether accomplished, having even deduced the equa-

tion we need to determine the unknown u by algebraic operations, which

could not be executed for the equations one degree higher, where it would

be necessary to have recourse to some special principle. It is therefore re-

markable that the resolution of a degree 6 equation is proved here by that of

the fourth degree, as opposed to following the preceding theorems, when it

was only permitted to recognize the possibility of this resolution after having

proved it for equations of degree 8. So now we are convinced that every

equation of degree 6 is resolvable into three double real factors, even when

it would be impossible to similarly resolve the equations of degree 8. The

method which serves me here for proving the resolution of equations of the

sixth degree extends equally to all the equations whose degree exponent is

oddly even, or whose half is an odd number, as I will show in the following

theorem. As for the rest, we note here that also by virtue of this theorem

every equation of the seventh degree is resolvable into a simple factor and

three double factors, all real.

Theorem 9.

53. Every equation whose degree exponent is a number of the form 4n+ 2

always has at least one real factor of the second degree, and this independently

of the above proofs.

Proof
Since the given equation is of this form

x4n+2 +Ax4n+1 +Bx4n + Cx4n−1 + · · · = 0,

let one of its arbitrary double factors be

xx− ux+ v,

and it is certain that u will be the sum of two arbitrary roots of the given

equation. Since the number of all the roots is 4n + 2, if we combine two of

them, the number of all the possible combinations will be

(4n+ 2)(4n+ 1)

1 · 2
= (2n+ 1)(4n+ 1)
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and the letter u will be susceptible to that many values; or indeed u will be

determined by an equation of degree (2n+1)(4n+1), which being odd, this

equation will necessarily have a real root which when put for u will give a

double real factor xx − ux + v. From this it follows that every equation of

degree 4n+2 always has at least one real factor of the second degree. Q.E.D.

Corollary 1.

54. So if an equation of degree 8 is resolvable into four double real factors,

every equation of degree 10 can be resolved into five double real factors,

and to prove this we need no recourse to equations of degree 16, as we did

previously.

Corollary 2.

55. And if every equation of degree 2n is resolvable into 2n−1 double real

factors, this theorem proves the resolvability into double real factors of equa-

tion of degree 2n + 2. And furthermore the equations of degrees 2n + 1 and

2n + 3 will also permit resolution into real factors, either simple or double,

since being of odd degree, they have at least one simple real factor.

Theorem 10.

56. Every equation whose degree exponent is a number of the form 8n+ 4

has at least one real factor of the fourth degree, and this independently of the

above proofs.

Proof
If we set an arbitrary fourth-degree factor

x4 − ux3 + αx2 + βx+ γ,

the coefficient u will be the sum of four arbitrary roots of the given equation.

Since this equation has 8n + 4 roots, the number of all the possible values

that the quantity u is susceptible to is

(8n+ 4)(8n+ 3)(8n+ 2)(8n+ 1)

1 · 2 · 3 · 4
=

(2n+ 1)(8n+ 3)(4n+ 1)(8n+ 1)

3
,

and therefore the quantity u will be determined by an equation of the same

degree; and it is clear that the exponent of this degree, being a whole number,

will be odd. So this equation will have at least one real root, which when

put for u, will also determine real values for α, β, γ, and we will obtain a

real factor of the fourth degree. Q.E.D.
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Corollary 1.

57. Therefore, since a real factor of the fourth degree is incontestably re-

solvable into two real factors of the second degree, every equation of degree

8n+ 4 will certainly have two double real factors at least, and the equations

of degree 8n+ 5 will have besides that one more simple real factor.

Corollary 2.

58. Since the equations of degree 12 are among this number, they will

have two double real factors, and the third factor will be of degree 8. So if

the latter is resolvable into four double real factors, we will have in total 6

double real factors, without needing to rise to equations of degree 16 in order

to prove it.

Scholium

59. One will prove by similar reasoning that every equation of degree 16n+

8 has at least one real factor of degree 8, and one will pass moreover to

equations of 32n+16, 64n+32, 128n+64, etc. dimensions in order to prove

that they have at least one real factor of degree 16, 32, 64, etc. From this we

will derive this consequence: that all equations from degree 8 to degree 16

can be resolved into real factors, either simple or double, by assuming only

the resolution of equations of degrees 4 and 8, and in general the resolution of

every equation can be done without needing to reduce it to a higher degree,

as we were obliged to do when using only the resolution of equations whose

degrees were binary powers. So combining together these two ways of proving,

we will no longer hesitate to agree with this general theorem, that every

algebraic equation, of whatever degree, is always resolvable into real factors,

either simple or double. However it is necessary to admit that it is for the

most part impossible to execute this resolution, or to explicitly assign these

real factors, because as soon as an equation passes the fourth degree, the

rules of algebra are no longer sufficient to reveal to us these roots. But for

the goal we have in view in establishing this general theorem, it suffices that

we are assured that such a resolution is always possible, though we may never

be able to execute it.

Theorem 11.

60. If an algebraic equation, of whatever degree, has any imaginary roots,

each one will be included in this general form M +Ni, the letters M and N

indicating real quantities.
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Proof
Let the given arbitrary equation of degree n be

xn +Axn−1 +Bxn−2 + Cxn−3 + · · · = 0,

so that the number of all its roots is equal to n. We decompose this equation

into all of its real factors, which will be either simple of the form x− p = 0,

or of the second degree of the form xx − 2px + q = 0; and all the roots are

found by solving the equalities that these factors furnish when set to zero.

Each simple factor, or equation x− p = 0, gives a real root x = p. And each

double factor, or equation xx− 2px+ q = 0, contains two roots

x = p+
√
pp− q and x = p−

√
pp− q,

which will also be real if pp > q. But if pp < q, let q = pp+ rr, and we will

have
√
pp− q =

√
−rr = ri. Therefore these two roots will be imaginary,

namely

x = p+ ri and x = p− ri.

So having demonstrated that it is always possible to resolve any equation

into either simple or double real factors, all the roots will also be either real,

or imaginary of the form M + Ni, where M and N are real quantities, so

that the imaginary which enters into it is contained only in the form
√
−1.

Q.E.D.

Corollary 1.

61. So if among the imaginary roots of an arbitrary equation is found

x = p + ri, there will certainly also be found x = p − ri. This is clear both

from the proof of this theorem, as well as from the nature of the radical sign√
−1, which contains in an essential way the + sign as well as the − sign,

so that knowing one imaginary root of an arbitrary equation, the other one

reveals itself.

Corollary 2.

62. Having already shown that the number of all the imaginary roots that

an arbitrary equation contains is even, each imaginary root x = p + ri will

have among the others its companion x = p − ri, which goes with it more

than all the others, seeing that both the sum of these two roots, 2p, as well

as their product,
√
pp+ rr, are real quantities.

Corollary 3.

63. From this it is also clear that if x − p − ri is an imaginary factor of

an arbitrary equation, the formula x− p+ ri will also be a factor of it. And
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these two factors joined together will give a double real factor of the same

equation, which will be
xx− 2px+ pp+ rr.

Scholium

64. We understand from this, conversely, that if one would be able to

show that all the imaginary roots of an arbitrary equation necessarily had

the form M +Ni, it would be easy to show from this that every equation is

also resolvable into real factors, either simple or of the second degree. For

the real roots would always furnish as many simple real factors, and each

imaginary root x = p+ri, when joined with its companion, x = p−ri, would

produce a double real factor:

xx− 2px+ pp+ rr,

so that if an equation of degree n = α+2β had α real roots and 2β imaginary

roots, of which each were of the form M +Ni, it would be shown that this

equation had α simple real factors and β double real factors. Now, it seems

very plausible that every imaginary root, however complicated it might be, is

always reducible to the form M+Ni, and Mr. d’Alembert has proved this in

his excellent piece on integral calculus, which is found in the second volume

of our Mémoires, in such a manner that there no longer remains the least

doubt. However, as he used in his proof infinitely small quantities, though

this consideration might not diminish the force of it, I will try to also derive

from this source a rigorous proof of the general theorem to which this piece

is intended, without having recourse to any infinitely small quantities. For

this purpose I will have need of several preliminary theorems.

Theorem 12.

65. Every function which is formed by addition, subtraction, multiplica-

tion, or division, from however many imaginary formulas of the form M+Ni,

will always be included in the same form M +Ni, the letters M and N in-

dicating real quantities.

Proof
Let us imagine several imaginary formulas of the indicated form, these

being

α+ βi and γ + δi and ϵ+ ζi and η + θi etc.

and it is immediately clear that by adding these formulas together, or by

taking some away, the resulting expression will always be included in the

form M + Ni. It is also clear that if we multiply two or more of these
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formulas together, the product will always be contained in the form M +Ni.

For the product of two,

α+ βi and γ + δi,

is
αγ − βδ + (αδ + βγ)i,

which when multiplied by ϵ + ζi will again give this form, and so on. So

the only remaining question is division. But it is clear that this case always

reduces to a fraction such as
A+Bi

C +Di
,

where both the numerator and the denominator are already made up of the

first three operations of addition, subtraction, and multiplication, from as

many imaginary formulas of the form M +Ni as we wish. Now this fraction

reduces to another, whose denominator is real, by multiplying above and

below by C −Di. For then we will have

AC +BD + (BC −AD)i

CC +DD
,

so that putting M for AC+BD
CC+DD and N for BC−AD

CC+DD , we will get the form

M +Ni. Consequently, this form remains unaltered by whichever operations

we use to join together as many imaginary formulas of the form M +Ni as

we wish.

Corollary 1.

66. From this it is also evident that all the powers whose exponent is a

positive whole number, of an imaginary formula A+Bi, will always have the

same form M +Ni, since these powers are formed by multiplication.

Corollary 2.

67. Next, since the power (A+Bi)n is included in the form M +Ni, if n

is a positive whole number, the same form will apply if n is a negative whole

number. For having

(A+Bi)−n =
1

(A+Bi)n
=

1

M +Ni
,

this form reduces to
M −Ni

MM +NN
.
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Corollary 3.

68. The general form M + Ni also includes all the real quantities, when

we set N = 0. So by joining together by the four operations mentioned, not

only imaginary formulas of the form M +Ni, but also reals, the product will

always be included in the form M +Ni.

Corollary 4.

69. It can also happen that this product, although formed from imaginary

formulas, becomes real, the imaginaries canceling each other, or rendering

N = 0. Thus the product of α + βi by α − βi is real; and we know that

(−1 +
√
−3)3 = 8.

Theorem 13.

70. Whatever the power of the root we extract, either from a real quantity

or from an imaginary of the form M + Ni, the roots will always be either

real, or imaginary of the form M +Ni.

Proof
Let n be the exponent of the root we need to extract, so that we have

for consideration either of the values n
√
a or n

√
a+ bi. Now since the latter

changes to the former if b = 0, it suffices to prove that

n
√
a+ bi or (a+ bi)1/n

is included in the form M +Ni, however large the number n is. In order to

prove this, we look for an angle φ such that its tangent is equal to b/a, or

putting
√
aa+ bb = c, we take the angle φ such that its sine is equal to b/c

and the cosine is equal to a/c. We will then have

a+ bi = c (cosφ+ i sinφ),

since cosφ = a/c and sinφ = b/c. Now, it was proved that an arbitrary

power of such a form as

(cosφ+ i sinφ)m

is
cosmφ+ i sinmφ

whatever number we mean by the letter m, whether it be positive, negative,

whole, fractional, or even irrational. This set, we will have

(a+ bi)1/n =
n
√
a+ bi = c1/n(cosφ+ i sinφ)1/n

=
(
cos

1

n
φ+ i sin

1

n
φ
)

n
√
c.
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So since c =
√
aa+ bb is a real quantity and positive, the angle φ and there-

fore also its part 1
nφ with its sine and cosine are also real quantities, and it

is evident that
n
√
a+ bi

or (
cos

1

n
φ+ i sin

1

n
φ
)

n
√
c

belongs to the form M + Ni. So all the roots of a real quantity, or an

imaginary quantity of the form M +Ni, are always included in the general

form M +Ni. Q.E.D

Corollary 1.

71. As we know that every quantity has two square roots, three cube roots,

four fourth roots, and so on, we find by this method all the roots, of which

the number is n, since 1
nφ has as many different values.

Corollary 2.

72. For since φ is the angle whose sine is b/c and whose cosine is a/c, in

place of φ we can also take the angles

4ρ+ φ, 8ρ+ φ, 12ρ+ φ, etc.

where ρ indicates the right angle, since all these angles have the same sine

and cosine. So substituting for φ in the root found(
cos

1

n
φ+ i sin

1

n
φ
)

n
√
c

these angles φ, 4ρ + φ, 8ρ + φ, 12ρ + φ, etc., we will find as many different

expressions as there are units in the exponent n.

Corollary 3.

73. Since n can indicate an arbitrary number, it follows from our proof

that not only n
√
a+ bi, where n is a positive whole number, but in general

that this expression (a + bi)m, whatever the number indicated by m, either

positive, or negative, or whole, or fractional, or even irrational, is always

included in the general form M +Ni.

Corollary 4.

74. Consequently, not only the four arithmetic operations, but also the

extraction of roots of whatever degree, does not change the form M +Ni of

the imaginary quantities, when we apply them in an arbitrary manner.
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Scholium

75. If the quantity for which we seek all the roots of a certain degree is

real, or b = 0, we will have c =
√
aa, from which we will get a positive value

for c, even when a is negative; and the angle φ will be equal to either 0 or

180◦, according to whether the cosine, a/c, is +1 or −1. In the first case,

where a is positive and c = a, the values of φ will therefore be 0, 4ρ, 8ρ, 12ρ,

etc. and the roots of degree n of the number a will be, putting ρ for the mark

of a right angle,

n
√
a,

(
cos

4ρ

n
+ i sin

4ρ

n

)
n
√
a,

(
cos

8ρ

n
+ i sin

8ρ

n

)
n
√
a, etc.

Now, if a is a negative number, we will have the following expressions, or else

the values of n
√
−a will be(

cos
2ρ

n
+ i sin

2ρ

n

)
n
√
a,

(
cos

6ρ

n
+ i sin

6ρ

n

)
n
√
a, etc.,

substituting for φ successively 2ρ, 6ρ, 10ρ, 14ρ, etc. But since this mat-

ter has already been sufficiently developed, I will limit myself here to this

unique consequence: that the extraction of roots, both of real quantities and

imaginaries of the form M + Ni, always produces either real quantities, or

imaginary quantities of the form M +Ni.

Theorem 14.

76. Whatever the degree of an algebraic equation, all the imaginary roots

that it can have are always included in this general form M +Ni, so that M

and N are real quantities.

Proof
Let the given general equation be

xn +Axn−1 +Bxn−2 + Cxn−3 +Dxn−4 + · · · = 0,

and although we are not in a position to assign a general formula which

contains all the roots, like we can for equations of the second, third, and

fourth degrees, it is nevertheless certain that this formula would be composed

of several radical signs, in which the known quantities A, B, C, D, E, etc. will

be entangled. We can also note that this analytic expression of an arbitrary

root will contain several members, each of which will be the root of a certain

degree of a quantity, which yet again contains radical signs, and that the latter

will have after them others still, and so on, until we reach, for each member,

the last radical sign, which will not modify anything but real quantities. Let

us successively climb out of these last radical signs, and it is clear that the
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quantity marked by the last radical sign will be either real or imaginary of

the form M + Ni. Then in front of this quantity, joined with some value,

either real or imaginary also of the form M +Ni, will be found a new radical

sign, which therefore reduces to n
√
M +Ni, whose value is yet again of the

form M + Ni; and if we climb in this manner up to the first radical signs,

which distinguish the members, we will see that no operation can separate

us from this form, and that consequently each member will finally have the

same form, no matter how large the number of radical signs which envelop

them. From this it follows that the general expression, which contains all the

roots of the given equation, will necessarily reduce to the form M + Ni, so

that all the imaginary roots would have only that form. Q.E.D.

Scholium 1.

77. We see, then, a new proof of the general theorem that I proposed to

prove here, to which one could find nothing to object, unless it is that we

do not know how the roots of equations of powers higher than the fourth are

entangled. But this objection will not have any force, provided that we agree

that the expressions for the roots contain nothing other than the operations

of extraction of roots, in addition to the four common operations, and one

could not hold that any transcendental operations are involved. But if the

conjecture that I advanced in the past, on the form of roots of equations of

an arbitrary order, is well-founded, the proof that I just gave here would have

all the force that one could wish. For given an arbitrary equation of degree

n, I say that there will always be an equation of degree n − 1, whose n − 1

roots are α, β, γ, δ, ϵ, etc., such that an arbitrary root of the other equation

of degree n will be

a+ n
√
α+ n

√
β + n

√
γ +

n
√
δ + · · · ,

where a is a real quantity. So, if the roots of the equation of degree n− 1 are

either real or of the form M +Ni, the roots of the equation of degree n will

also have this form. Consequently, since the roots of equations of the second

degree are either real or of the form M + Ni, the roots of equations of the

third degree also reduce to this form, and therefore also roots of equations

of degrees 4, 5, 6, etc., to infinity.

Scholium 2.

78. From this we will again draw this important consequence: that any

imaginary quantity, however complicated it may be, is always reducible to

this formula M +Ni, so that every imaginary quantity is always composed

of two numbers, one of which is a real quantity indicated by M , and the
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other the product of another real quantity N , multiplied by
√
−1, so that√

−1 is the sole source of all the imaginary expressions. For if we look to the

origin of imaginary quantities, which is the extraction of roots or the resolu-

tion of equations, it has been shown that all the imaginary quantities which

result from them are always included in this form M +Ni, and furthermore

I have shown that whatever the manner we treat one or several imaginary

quantities of this form using the operations of analysis—addition, subtrac-

tion, multiplication, division, and the extraction of roots—all the resulting

expressions always reduce to the same form M + Ni. We will be obliged,

then, to agree with this truth, insofar as only algebraic operations are in-

volved in the imaginary formulas. But one will doubt, perhaps, whether the

imaginary quantities which originate from transcendental operations, such

as those which surround the nature of logarithms or of angles, are still re-

ducible to the same form. So in order to lift this doubt, I will show that

all the transcendental operations which are known do not produce imaginary

quantities that diverge from the indicated form. And although it would be

impossible to apply the same reasoning to all the transcendental operations,

the following propositions will remove all remaining cause to doubt the truth

of this general property of all the imaginary quantities, from whatever source

they may draw their origin.

Problem 1.

79. An imaginary quantity being raised to a power where the exponent is

an arbitrary real quantity, to determine the imaginary form which results.

Solution

Let a+bi be the imaginary quantity, andm the real exponent of the power,

so that it is a question of determining M and N in order that

(a+ bi)m = M +Ni.

Let us set
√
aa+ bb = c, and c will always be a real quantity and positive, for

we do not consider here the ambiguity of the sign
√

. Next, let us seek the

angle φ such that its sine is b/c and the cosine is a/c, taking into account here

the nature of the quantities a and b, whether they are positive or negative.

It is certain that we will always be able to assign this angle φ, whatever the

quantities a and b, provided they are real, which we assume. Now having

found this angle φ, which will always be real, we will have at the same time

all the other angles whose sine, b/c, and cosine, a/c, are the same; for putting

π for the angle of 180◦, all these angles will be

φ, 2π + φ, 4π + φ, 6π + φ, 8π + φ, etc.,
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to which we can add these

−2π + φ, −4π + φ, −6π + φ, −8π + φ, etc.

This set, we will have

a+ bi = c (cosφ+ i sinφ),

and the given power

(a+ bi)m = cm(cosφ+ i sinφ)m,

where cm will always have one real positive value, which it is necessary to

give it in preference to all the other values it could have. Then it is proved

that
(cosφ+ i sinφ)m = cosmφ+ i sinmφ,

where it must be noted that since m is a real quantity, the angle mφ will also

be real, and therefore also its sine and cosine. Therefore we will have

(a+ bi)m = cm(cosmφ+ i sinmφ),

or indeed the power (a+ bi)m is contained in the form M +Ni, by taking

M = cm cosmφ and N = cm sinmφ,

where

c =
√
aa+ bb and cosφ = a/c and sinφ = b/c.

Q.E.D.

Corollary 1.

80. In the same manner that

(cosφ+ i sinφ)m = cosmφ+ i sinmφ,

it will also be that

(cosφ− i sinφ)m = cosmφ− i sinmφ,

and therefore we will have

(a− bi)m = cm(cosmφ− i sinmφ),

where φ indicates the same angle as in the preceding.

Corollary 2.

81. If the exponent m is negative, since

sin(−mφ) = − sinmφ and cos(−mφ) = cosmφ,

it will also be that

(cosφ± i sinφ)−m = cosmφ∓ i sinmφ
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and
(a± bi)−m = c−m(cosmφ∓ i sinmφ).

Corollary 3.

82. If m is a whole number, either negative or positive, the formula (a +

bi)m will have only a single value; for although we substitute for φ all the

angles φ, ±2π + φ, ±4π + φ, ±6π + φ, etc., we will always find for sinmφ

and cosmφ the same values.

Corollary 4.

83. But if the exponent m is a fractional number µ/ν, then the expression

(a + bi)µ/ν will have as many different values as there are units in ν; for

by substituting for φ the indicated angles, we will obtain as many different

values for sinmφ and cosmφ, as the number ν contains units.

Corollary 5.

84. From this it is clear that ifm is an irrational number, incommensurable

with unity, the expression (a + bi)m will also have an infinity of different

values, because all the angles φ, ±2π+φ, ±4π+φ, ±6π+φ, etc. will supply

distinct values for sinmφ and cosmφ.

Scholium 1.

85. The basis of the solution to this problem is

(cosφ+ i sinφ)m = cosmφ+ i sinmφ,

whose truth is proved by the known theorems on the multiplication of angles.

For having two arbitrary angles φ and θ, it will be that

(cosφ+ i sinφ)(cos θ + i sin θ) = cos(φ+ θ) + i sin(φ+ θ),

which is clear by explicit multiplication, which gives

cosφ cos θ − sinφ sin θ + (cosφ sin θ + sinφ cos θ) i.

Now, we know that

cosφ cos θ − sinφ sin θ = cos(φ+ θ)

and

cosφ sin θ + sinφ cos θ = sin(φ+ θ).

From this we easily derive the consequence, which is

(cosφ+ i sinφ)m = cosmφ+ i sinmφ,
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when the exponent m is a whole number. But that the same formula also

has a place when m is an arbitrary number, differentiating after taking the

logarithms will put away any doubt. For, taking logarithms, we will have

m ln(cosφ+ i sinφ) = ln(cosmφ+ i sinmφ).

Now, treating the angle φ as a variable quantity, we will have

−mdφ sinφ+mdφ i cosφ

cosφ+ i sinφ
=

−mdφ sinmφ+mdφ i cosmφ

cosmφ+ i sinmφ
,

and multiplying the numerators by −i, we will obtain

−mdφ (cosφ+ i sinφ)

cosφ+ i sinφ
=

mdφ (cosmφ+ i sinmφ)

cosmφ+ i sinmφ
= mdφ,

which is an identity equation.

Scholium 2.

86. But one will ask how we would have been able to arrive at the transfor-
mation of the formula (a+ bi)m to the form M +Ni, if we did not know the

given property of multiple angles, which seems at first altogether foreign to

this goal. For this purpose I will adjoin here another solution of the problem,

without using this property; and the method which will serve me will also

lead to the solution of the problems which follow. As it is a question, then,

of converting the form (a+ bi)m into that of (x+ yi), I put

(a+ bi)m = x+ yi

and, taking the logarithms, we will have

m ln(a+ bi) = ln(x+ yi).

Now regarding a, b, x, and y as variables, I take the differentials

mda+mdb i

a+ bi
=

dx + dy i

x+ yi
,

which reduce to this equation

mada−mbda i+madb i+mbdb

aa+ bb
=

x dx+ x dy i− y dx i+ y dy

xx+ yy
,

where it is necessary that the real and imaginary members be separately set

equal to each other, since it is impossible to equate a real quantity to an

imaginary. From this we will derive two equations:

mada+mbdb

aa+ bb
=

x dx+ y dy

xx+ yy
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and
m(a db− b da)

aa+ bb
=

x dy − y dx

xx+ yy
.

The integral of the first is

m ln
√
aa+ bb = ln

√
xx+ yy + lnC.

So let
√
aa+ bb = c, and we will have

cm = C
√
xx+ yy.

In order to determine this constant C, we only have to note that if b = 0 and

a = 1, it is necessary that y = 0 and x = 1, from which we see that it must

be that C = 1. So setting
√
aa+ bb = c, we will have
√
xx+ yy = cm.

Next, the integral of the other equation is

m arctan
b

a
= arctan

y

x
+ C,

where we see that the constant C must be equal to 0, since if b = 0, it must

also be that y = 0. Consequently, we will have

m arctan
b

a
= arctan

y

x
.

Let φ be the angle whose tangent is b/a, or as well sinφ = b/c and cosφ =

a/c, and having mφ = arctan y
x , it will be that

y

x
= tanmφ,

or
y√

xx+ yy
= sinmφ and

x√
xx+ yy

= cosmφ.

So since
√
xx+ yy = cm, we will have for the solution of the problem

x = cm cosmφ and y = cm sinmφ,

taking c =
√
aa+ bb, and the angle φ being such that sinφ = b/c and

cosφ = a/c. From this we see that the angle φ has an infinity of values, as I

have already noted, which are φ, ±2π + φ, ±4π + φ, ±6π + φ, etc.

Problem 2.

87. A positive real quantity being raised to a power where the exponent is

an imaginary quantity, to find the imaginary value of this power.
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Solution
Let a be a positive real quantity and m + ni the exponent of the power,

so that it is necessary to seek the imaginary value of am+ni. So let

am+ni = x+ yi,

and we will have
(m+ ni) ln a = ln(x+ yi),

taking the differentials of which while putting a, x, and y as variables, we

will have

mda

a
+

nda i

a
=

dx + dy i

x+ yi
=

x dx+ y dy

xx+ yy
+

x dy − y dx

xx+ yy
i.

Then separately equating the real and imaginary members, we will have these

two equations

mda

a
=

x dx+ y dy

xx+ yy
and

nda

a
=

x dy − y dx

xx+ yy
,

of which the integrals taken, as is necessary, will be
√
xx+ yy = am

and

arctan
y

x
= n ln a or

y

x
= tan(n ln a)

where ln a indicates the hyperbolic logarithm of the positive real quantity a,

which will consequently also have a real value. Then by taking, in a circle of

radius 1, an arc equal to n ln a, because
√
xx+ yy = am, we will obtain

x = am cos(n ln a) and y = am sin(n ln a),

and these values being put for x and y, we will have

am+ni = x+ yi.

Q.E.D.

Corollary 1.

88. The imaginary quantity am+ni will therefore also be included in the

general form M +Ni, since we just found

am+ni = am cos(n ln a) + am i sin(n ln a),

when a is a positive real quantity; for if a were a negative quantity, though

real, its logarithm would be imaginary, and therefore both cos(n ln a) and

sin(n ln a) would also be imaginary.
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Corollary 2.

89. Since am+ni = am · ani, we will have

ani = cos(n ln a) + i sin(n ln a),

and taking n negative, we will also have

a−ni = cos(n ln a)− i sin(n ln a).

Corollary 3.

90. From this it follows that the following formulas are real:

ani + a−ni

2
= cos(n ln a)

and
ani − a−ni

2i
= sin(n ln a).

Now, if a = 1 we will have both

1ni = 1 and 1−ni = 1

because ln 1 = 0.

Corollary 4.

91. So if we put n = 1 and a = 2, we will have

2i + 2−i

2
= cos(ln 2)

and
2i − 2−i

2i
= sin(ln 2).

Now since
ln 2 = 0.6931471805599,

we will derive from it

cos(ln 2) = 0.7692389013540 =
2i + 2−i

2
.

[Mais l’arc même dont le cosinus = ln 2 se trouve 39◦ 42I 51II 52III 9IV.]

Scholium 2.

92. The case where a is a negative number, which is not included in this

solution, although a is a real quantity, is solved by the next problem, where

I will take for the quantity which must be raised to an imaginary exponent,
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an arbitrary imaginary quantity of the form a + bi, which encompasses, by

setting b = 0, all real quantities, both negative and positive.

Problem 3.

93. An imaginary quantity being raised to a power where the exponent is

also imaginary, to find the imaginary value of this power.

Solution
Let a + bi be the imaginary quantity, and m + ni the exponent of the

power, so that it is necessary to find the value of this formula:

(a+ bi)m+ni

Let us therefore put for this purpose

(a+ bi)m+ni = x+ yi,

and, taking logarithms, we will have

(m+ ni) ln(a+ bi) = ln(x+ yi).

Let us pass to the differentials, and since, as we have already seen,

d. ln(x+ yi) =
x dx+ y dy

xx+ yy
+

x dy − y dx

xx+ yy
i,

we will have

m(a da+ b db)

aa+ bb
+

n(a da+ b db)

aa+ bb
i+

m(a db− b da)

aa+ bb
i− n(a db− b da)

aa+ bb

=
x dx+ y dy

xx+ yy
+

(x dy − y dx)

xx+ yy
i.

We now separately equate the real and imaginary members, obtaining these

two equalities:

m(a da+ b db)

aa+ bb
− n(a db− b da)

aa+ bb
=

x dx+ y dy

xx+ yy
,

m(a db− b da)

aa+ bb
+

n(a da+ b db)

aa+ bb
=

x dy − y dx

xx+ yy
.

In order to take the integrals let

√
aa+ bb = c and arctan

b

a
= φ,
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or indeed

sinφ =
b

c
and cosφ =

a

c
,

from which we can always find the angle φ. Now, I assume here that c is a

positive quantity
√
aa+ bb. This noted, our integrals will be

m ln c− nφ = ln
√
xx+ yy,

mφ+ n ln c = arctan
y

x
.

From this it follows that we will have
√
xx+ yy = cme−nφ

putting e for the number whose hyperbolic logarithm is equal to 1. Thus, in

order to find the values x and y of this equation:

(a+ bi)m+ni = x+ yi,

having set c =
√
aa+ bb and taken the angle φ such that cosφ = a/c and

sinφ = b/c, we will have

x = cme−nφ cos(mφ+ n ln c),

y = cme−nφ sin(mφ+ n ln c).

Q.E.D.

Corollary 1.

94. If b = 0 and a is a positive quantity, we will have c = a and the angle

φ = 0 or ±2π or ±4π, or in general φ = 2λπ, taking λ for an arbitrary whole

number. So we will have

am+ni = ame−2λnπ
(
cos(2λmπ + n ln a) + i sin(2λmπ + n ln a)

)
,

which agrees with the preceding form when λ = 0, so that this transformation

is more general.

Corollary 2.

95. If b = 0 and a is a negative quantity −a, it will still be c = +a and,

because cosφ = −a/c = −1, the angle φ will be ±π or ±3π or ±5π etc.,

or in general φ = (2λ− 1)π, taking for λ an arbitrary whole number, either
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positive or negative. We will then have

(−a)m+ni = ame−(2λ−1)nπ
(
cos((2λ− 1)mπ + n ln a)+

i sin((2λ− 1)mπ + n ln a)
)
.

Corollary 3.

96. In general then, whatever the quantities a and b are, by giving to c the

positive value of
√
aa+ bb, and taking for φ an angle such that sinφ = b/c

and cosφ = a/c, since for φ we can equally take in general the angle 2λ+φ,

where λ indicates an arbitrary positive or negative whole number, we will

have

(a+ bi)m+ni = cme−2λnπ−nφ
(
cos(2λmπ +mφ+ n ln c)+

i sin(2λmπ +mφ+ n ln c)
)
,

from which we will find all the possible values that this formula

(a+ bi)m+ni

contains, by successively giving to λ all the values 0, ±1, ±2, ±3, ±4, etc.,

where it suffices to take for cm the sole real positive value that is included in

it.

Corollary 4.

97. If a = 0, m = 0, and b = 1, we will have c = 1 and φ = 1
2π, from

which we will derive this transformation

ini = e−2λnπ− 1
2nπ

or indeed

ii = e−2λπ− 1
2π

which is all the more remarkable because it is real, and it even contains an

infinity of different real values. For setting λ = 0, we will have in numbers

ii = 0.2078795763507.

Corollary 5.

98. If we set a = cosφ and b = sinφ, taking c = 1, so that ln c = 0, we

will have this remarkable transformation

(cosφ+ i sinφ)m+ni = e−2λnπ−nφ
(
cosm(2λπ + φ) + i sinm(2λπ + φ)

)
,
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and if m = 0, this formula will be real:

(cosφ+ i sinφ)ni = e−2λnπ−nφ

Scholium

99. We see from this, then, that all imaginary quantities which draw their

origin not only from algebraic operations, but also those which arise from

the raising to arbitrary, and even imaginary, exponents are always reducible

to the general form

M +Ni.

And we also understand from this that if the exponents were themselves of

such powers to imaginary exponents, the value of the whole formula would

nevertheless be included in the form M +Ni. For it is clear that if α, β, γ

indicate imaginary quantities of the form M +Ni, then the derived quantity

αβγ

would also always be included in that form, since the exponent βγ is

reducible to this form.

Problem 4.

100. Given an arbitrary imaginary number, to find its hyperbolic logarithm.

Solution
Let a+ bi be the imaginary quantity whose logarithm we must find, which

will be x+ yi, so that

ln(a+ bi) = x+ yi.

Taking the differentials, we will have

a da+ b db

aa+ bb
+

a db− b da

aa+ bb
i = dx+ i dy.

Again let
√
a+ bb = c, and the angle φ such that cosφ = a/c and sinφ = b/c,

and by integration we will find

x = ln
√
aa+ bb = ln c and y = arctan

b

a
= φ.

So we will have

ln(a+ bi) = ln
√
aa+ bb+ i · arccos a√

aa+ bb

or

ln(a+ bi) = ln
√
aa+ bb+ i · arcsin b√

aa+ bb
.

Q.E.D.
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Corollary 1.

101. Since there are infinitely many angles which correspond to the same

sine, b/
√
aa+ bb, and cosine, a/

√
aa+ bb, each number, real as well as imag-

inary, has an infinity of logarithms, all of which are imaginary except for a

single one, when b = 0 and a is a positive number.

Corollary 2.

102. If we put
√
aa+ bb = c, and the angle found is φ, because a = c cosφ

and b = c sinφ, we will have

ln
(
c (cosφ+ i sinφ)

)
= ln c+ iφ,

where in place of φ it is permitted to put ±2π + φ, ±4π + φ, ±6π + φ, etc.,

the character π indicating the sum of two right angles. We will therefore

have
ln(cosφ+ i sinφ) = iφ.

Problem 5.

103. Given an imaginary logarithm, to find the number which goes with it.

Solution
Let a+ bi be the given imaginary logarithm, and x+ yi the number which

goes with it, so that

ln(x+ yi) = a+ bi.

Comparing this equation to what we just deduced in the preceding article:

ln
(
c (cosφ+ i sinφ)

)
= ln c+ iφ,

we will have φ = b and ln c = a, so c = ea assuming ln e = 1. From this we

will derive
x = ea cos b and y = ea sin b.

Consequently, the number which corresponds to the logarithm a+ bi will be

equal to

ea(cos b+ i sin b).

Q.E.D.

Corollary 1.

104. So every time that b is either zero, or equal to ±π or ±2π or ±3π or

in general b = ±λπ, the number which corresponds to the logarithm a + bi

will be real and equal to ±ea. It will be positive if λ is an even number, and

negative if λ is odd.
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Corollary 2.

105. We also see that there is but a single number which leads to a given

logarithm, and whenever the logarithm is real, the number will also be real.

But there are also cases where, although the logarithm is imaginary, the

number is nevertheless real. But since I have already sufficiently explained

this matter elsewhere, I will proceed to imaginary quantities, which include

angles, or their sines, cosines, and tangents.

Problem 6.

106. Given an angle, or an arbitrary imaginary arc of the circle, to find

its sine and cosine and tangent.

Solution
Let a+ bi be the given angle, which being made up of two parts, one real,

a, and the other imaginary, bi, we only have to look for the sine and the

cosine of this imaginary arc. Now, the known series gives us:

cos bi = 1 +
bb

1 · 2
+

b4

1 · 2 · 3 · 4
+ · · · = eb + e−b

2
,

sin bi = bi+
b3i

1 · 2 · 3
+

b5i

1 · 2 · 3 · 4 · 5
+ · · · = eb − e−b

2
i,

and from this we will derive

sin(a+ bi) =
1

2
(eb + e−b) sin a+

i

2
(eb − e−b) cos a,

cos(a+ bi) =
1

2
(eb + e−b) cos a− i

2
(eb − e−b) sin a,

so the tangent will be

tan(a+ bi) =
(eb + e−b) tan a+ i (eb − e−b)

(eb + e−b)− i (eb − e−b) tan a

or

tan(a+ bi) =
(e2b + 1) tan a+ i (e2b − 1)

(e2b + 1)− i (e2b − 1) tan a
.

Q.E.D.

Corollary 1.

107. Since in the expression of the tangent, both the numerator and the

denominator are imaginaries, if we free the denominator of them, we will

have

tan(a+ bi) =
2e2b sin 2a+ i (e4b − 1)

e4b + 2e2b cos 2a+ 1
.
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Corollary 2.

108. The sine of the angle a+ bi becomes real not only in the case b = 0,

where the angle itself is real, but also in the case where cos a = 0, which

happens when, putting ρ to indicate a right angle, we have a = (2λ − 1)ρ,

where λ signifies a whole number, either positive or negative. For then we

will have

sin((2λ− 1)ρ+ bi) = ± 1
2 (e

b + e−b),

where the + sign occurs if λ is an odd number, and the − sign if λ is an even

number.

Corollary 3.

109. In the same way, the cosine of the angle a + bi will be real not only

when b = 0, but also when sin a = 0, which happens if a = 2λρ, and then we

will have

cos(2λρ+ bi) = ± 1
2 (e

b + e−b),

where the top + sign happens if λ is an even number, and the bottom − sign

if λ is an odd number.

Corollary 4.

110. As for the tangent of the angle a+ bi, it can never become real unless

b = 0, in which case the angle itself is real.

Corollary 5.

111. The formulas we found will yet again furnish, by giving to
√
−1

its two signs, which equally suit it, the following formulas, which it will be

appropriate to note:

sin(a+ bi) + sin(a− bi) = (eb + e−b) sin a,

sin(a+ bi)− sin(a− bi) = (eb − e−b) i cos a,

cos(a+ bi) + cos(a− bi) = (eb + e−b) cos a,

cos(a+ bi)− cos(a− bi) = −(eb − e−b) i sin a.

Problem 7.

112. The sine of an angle being real, but greater than the total sine, so that

the angle is imaginary, to find the value of this angle.

Solution
There are two cases here, according to whether the given sine is positive

or negative.
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I. So first let the positive sine be p, and p > 1, always taking unity for

the total sine, and let the imaginary angle which corresponds to this sine be

a + bi. In order that the sine be real, it is necessary that a = (2λ − 1)ρ,

taking ρ for the mark of a right angle, and since according to §108

sin((2λ− 1)ρ+ bi) = ±1
2 (e

b + e−b) = p,

it must be that λ is an odd number. So let λ = 2µ+ 1, and we will have

sin
(
(4µ+ 1)ρ+ bi

)
= 1

2 (e
b + e−b) = p.

Since this equation is always possible, we will derive from it

eb = p±
√
pp− 1 and b = ln(p±

√
pp− 1).

Therefore the sought angle, which corresponds to the sine, p, will be

(4µ+ 1)ρ+ i ln(p±
√

pp− 1).

II. Let the given negative sine be −p and p > 1, and it is necessary that

λ be an even number. So let λ = 2µ, and we will have

sin
(
(4µ− 1)ρ+ bi

)
= −1

2 (e
b + e−b) = −p.

From this we derive as in the preceding case

eb = p±
√
pp− 1 and b = ln(p±

√
pp− 1).

Therefore the angle which corresponds to the negative sine, −p, will be

(4µ− 1)ρ+ i ln(p±
√

pp− 1).

Q.E.D.

Problem 8.

113. The cosine of an angle being real, but greater than the total sine which

is 1, so that the angle is imaginary, to find the imaginary angle which corre-

sponds to this cosine.

Solution
Let p > 1 and the given cosine be equal to +p. Let the corresponding

angle be a+ bi, and by §109 it is clear we must have a = 2λρ, in order that

cos(2λρ+ bi) = ±1
2 (e

b + e−b) = p,

so λ must be an even number. So let λ = 2µ, and we will have

cos(4µρ+ bi) = 1
2 (e

b + e−b) = p,
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from which we derive

eb = p±
√
pp− 1 and b = ln(p±

√
pp− 1),

and therefore the positive cosine, p, corresponds to the angle

4µρ+ i ln(p±
√
pp− 1).

If the given cosine is negative, and equal to −p when p > 1, it is necessary

to take for λ an odd number. So let λ = 2µ+ 1, and the angle or arc which

corresponds to the negative cosine, −p, will be

(4µ+ 2)ρ+ i ln(p±
√

pp− 1).

Q.E.D.

Corollary

114. It is not important whether we take p+
√
pp− 1 or p−

√
pp− 1, since

either is a positive quantity. We only have to remark that

ln(p+
√

pp− 1) = − ln(p−
√
pp− 1)

so that this ambiguity reflects that which is essential to
√
−1.

Problem 9.

114′. Given the imaginary sine of an angle, to find the value of the angle

or imaginary arc which corresponds to it.

Solution
Let p+qi be the given imaginary sine, and the sought angle a+bi, so that

it is necessary to have

sin(a+ bi) = p+ qi.

Let us now compare this form p+ qi with what was found in problem 6, and

we will have

p = 1
2 (e

b + e−b) sin a and q = 1
2 (e

b − e−b) cos a,

and from this we will derive

p cos a+ q sin a = eb sin a cos a

or

eb =
p

sin a
+

q

cos a

and

e−b =
p

sin a
− q

cos a
.
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Now since ebe−b = 1, we will obtain

pp cos2 a− qq sin2 a = sin2 a cos2 a

or

pp− (pp+ qq) sin2 a = sin2 a− sin4 a,

from which we derive:

sin2 a = 1
2 (1 + pp+ qq)±

√
1
4 (1 + pp+ qq)2 − pp

sin a = 1
2

√
1 + 2p+ pp+ qq ± 1

2

√
1− 2p+ pp+ qq

cos2 a = 1
2 (1− pp− qq)∓

√
1
4 (1 + pp+ qq)2 − pp .

But since cos 2a = 2 cos2 a− 1, we will have

cos 2a = −pp− qq +
√
1− 2pp+ 2qq + (pp+ qq)2 ,

and since this expression is always real and less than unity, the angle 2a and

therefore also a will be real, and we will find

sin a =

√
1− cos 2a

2
and cos a =

√
1 + cos 2a

2
.

Now, since these quantities have been found, along with the angle a, we will

have

b = ln
( p

sin a
+

q

cos a

)
,

and the angle which corresponds to the sine, p+ qi, will be

a+ bi.

Q.E.D.

Corollary

115. If the given sine is simply imaginary, or equal to qi, so that p = 0, it

is clear that we must have sin a = 0, and therefore a = 2λρ, where ρ indicates

the right angle and λ an arbitrary whole number. Then we will have

q = ±1
2 (e

b − e−b),

according to whether λ is an even or odd number. So we will have

eb = ±q ±
√
qq + 1,
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and therefore we will always be able to render this quantity positive, from

which we will derive

b = ln(
√
qq + 1± q),

where the sign + occurs if λ is an even number, and the sign − if λ is odd.

Thus the arc which corresponds to the sine, qi, will be either

4µρ+ i ln(
√
qq + 1 + q)

or

(4µ+ 2)ρ+ i ln(
√
qq + 1− q).

Problem 10.

116. Given the imaginary cosine of an angle, to find the imaginary value

of the arc or angle which corresponds to it.

Solution
Let p+ qi be the given imaginary cosine, and a+ bi the corresponding arc

sought, so that

cos(a+ bi) = p+ qi.

If we relate this equality to article 106, we will have

p = 1
2 (e

b + e−b) cos a and q = −1
2 (e

b − e−b) sin a,

from which we will obtain

eb =
p

cos a
− q

sin a

and

e−b =
p

cos a
+

q

sin a

and

cos2 a = 1
2 (1 + pp+ qq)±

√
1
4 (1 + pp+ qq)2 − pp ,

so

cos 2a = pp+ qq −
√
1− 2pp+ 2qq + (pp+ qq)2 ,

which is also always real and less than the total sine, and from this we will

have

sin a =

√
1− cos 2a

2
and cos a =

√
1 + cos 2a

2
,

and having determined the angle a itself, because of

b = ln
( p

cos a
− q

sin a

)
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the angle or arc which corresponds to the imaginary cosine, p+ qi, will be

a+ bi.

Q.E.D.

Corollary

117. If p = 0, so that the given cosine is equal to qi, we will have cos a = 0,

and therefore a = (2λ− 1)ρ, from which we derive

q = −1
2 (e

b − e−b) · ±1,

where the top sign applies if λ is an odd number, and the bottom, if even.

We will then have:

e2b = ∓2ebq + 1,

eb = ∓q +
√

qq + 1,

b = ln(
√
qq + 1∓ q),

and the arc which corresponds to the cosine, qi, will be either

(4µ+ 1)ρ+ i ln(
√
1 + qq − q)

or

(4µ+ 3)ρ+ i ln(
√
1 + qq + q).

Scholium

118. Having found the value of cos 2a, if we look to it for the values

sin a =

√
1− cos 2a

2
and cos a =

√
1 + cos 2a

2
,

we can take them to be either positive or negative. In order to make the

choice, it is necessary to look to the quantities p and q, whether they are

positive or negative, and to then give to sin a and cos a the signs which

render the values of eb and e−b positive, both in this problem and in the

preceding. So in each case the choice is easy to make, so that we are always

able to find real values for the letters a and b.

Problem 11.

119. An imaginary tangent being given, to find the imaginary value of the

angle or arc which corresponds to it.
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Solution
Let p+ qi be the given imaginary tangent, and a+ bi the arc which goes

with this tangent, so that

tan(a+ bi) = p+ qi.

We found above in §107 that

tan(a+ bi) =
2e2b sin 2a+ i (e4b − 1)

e4b + 2e2b cos 2a+ 1
,

so it is necessary that

p =
2e2b sin 2a

e4b + 2e2b cos 2a+ 1
and q =

e4b − 1

e4b + 2e2b cos 2a+ 1
.

From this we derive these two equations:

e4bp+ 2e2b(p cos 2a− sin 2a) + p = 0

e4b(q − 1) + 2e2bq cos 2a+ q + 1 = 0,

and by elimination

e2b =
−p

p cos 2a+ (q − 1) sin 2a
=

−p cos 2a+ (q + 1) sin 2a

p
.

So we will have

0 = pp (1− cos2 2a) + 2p sin 2a cos 2a+ (qq − 1) sin2 2a

or
0 = pp sin 2a+ 2p cos 2a+ (qq − 1) sin 2a.

Consequently, we will have

tan 2a =
2p

1− pp− qq

and therefore

sin 2a =
2p√

4pp+ (1− pp− qq)2

and

cos 2a =
1− pp− qq√

4pp+ (1− pp− qq)2
.

So

e2b =
pp+ (1 + q)2√

4pp+ (1− pp− qq)2



Imaginary Roots of Equations 57

and

b = 1
2 ln(pp+ (1 + q)2)− 1

4 ln(4pp+ (1− pp− qq)2).

So having found by these formulas both the value for b and that of the angle

2a or a, the arc which corresponds to the imaginary tangent p+ qi will be

a+ bi.

Q.E.D.

Corollary 1.

120. Since

4pp+ (1− pp− qq)2 = (pp+ (q + 1)2)(pp+ (q − 1)2),

it will be that

e4b =
pp+ (q + 1)2

pp+ (q − 1)2

and therefore

b = 1
4 ln

pp+ (q + 1)2

pp+ (q − 1)2
.

Now, the angle a is most conveniently determined from the formula of the
tangent

tan 2a =
2p

1− pp− qq
,

from which we see that the values of a and b will always be real.

Corollary 2.

121. If p = 0, or one wishes to find the angle whose tangent is qi, we will

have tan 2a = 0, so 2a = 2λρ and

a = λρ and b = 1
4 ln

(q + 1)2

(q − 1)2
.

Consequently, to the tangent qi corresponds the arcs

λρ+
i

4
ln

(q + 1)2

(q − 1)2
,

where λρ indicates an arbitrary multiple of the right angle.

Corollary 3.

122. Here the case where q+1 = 0 or q−1 = 0 requires a special reduction,

which is necessary to make before setting p = 0. So let qq − 1 = 0, or the
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given tangent equal to p± i, and we will have

tan 2a = −2

p

and

e4b =
pp+ 2± 2

pp+ 2∓ 2
,

which is to say for the top sign

e4b =
pp+ 4

pp

and for the bottom

e4b =
pp

pp+ 4
.

Now if p = 0, we will have

2a = (2λ+ 1)ρ

because of tan 2a = ∞ and b = ±∞. Therefore, to the tangent ±i corre-

sponds the angle

(λ+ 1
2 )ρ±∞ · i.

Corollary 4.

123. When

pp = 1− qq or p =
√
1− qq

we will have
tan 2a = ∞

and
2a = (2λ+ 1)ρ or a = (λ+ 1

2 )ρ.

Then we will have

b = 1
4 ln

1 + q

1− q
,

so that to the tangent
√
1− qq + qi corresponds to the arc

(λ+ 1
2 )ρ+

i

4
ln

1 + q

1− q
.

Scholium

124. So since all these imaginary quantities, which are formed by tran-

scendental operations, are also included in the general form

M +Ni,
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we may hold without hesitation that in general all imaginary quantities,

however complicated they may be, are always reducible to the form M +Ni,

or that they are always composed of two members, where one is real, and the

other is a real quantity multiplied by
√
−1.


