
ON THE LOGARITHMS OF

NEGATIVE AND IMAGINARY NUMBERS

Leonhard Euler

1. In the exchange of letters between Messrs. Leibnitz and Jean Bernoulli,

we find a great controversy over the logarithms of negative and imaginary

numbers, a controversy which has been treated by both sides with much force,

without however, these two illustrious men having fallen into agreement on

this matter, although otherwise we note a very perfect harmony between

them on all the other points of analysis. This dissension seems all the more

remarkable because it centers upon an article of the part of mathematics

which we call pure, and which we do not ordinarily believe susceptible to any

dispute, it all being based on the most rigorous proofs. For we know that the

other questions on which mathematicians are not in agreement belong to the

applied part of mathematics, where the diverse ways of envisaging the objects

and reducing them to mathematical ideas give rise to real controversies; and

we even boast that they have been altogether banished from analysis or pure

mathematics.

2. Indeed, the glory of infallibility which this science has acquired would suffer

a great attack, if there were questions on which beliefs were not only divided,

but where it were even impossible to discover the truth by a clear proof which

would put an end to all dispute. Since there is not the slightest doubt that

such an accommodation between the differing opinions of Messrs. Leibnitz

and Bernoulli has not taken place, I will examine both, weighing the argu-

ments which each invokes both for the confirmation of his belief as well as

for the refutation of the contrary, and I hope to develop this matter well and

put it into full light, so that there will not remain the slightest doubt and so

that both parties will be obliged to recognize the solidness of the verdict I

will give, and which will put an end to all the disputes which might yet arise

on this matter.

3. M. Leibnitz gave the first occasion to this controversy with M. Bernoulli,

when he advanced in letter CXC that the ratio of 1 to −1, or of −1 to 1, was

imaginary, since the logarithm or measure of this ratio is imaginary, where he
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clearly was assuming that the logarithms of negative numbers are imaginary

or impossible. To this M. Bernoulli declared, in letter CXCIII, that he was

not of the same opinion and that he even believed the logarithms of negative

numbers were not only real, but also equal to the logarithms of the same

numbers taken positively. He holds, then, that

ℓ(+x) = ℓ(−x),

which he claims to prove by the equality of their differentials, considering

that

d ℓ x =
dx

x

and furthermore

d ℓ(−x) =
−dx

−x
=

dx

x
.

Against this argument M. Leibnitz responds that the common rule of differen-

tiating logarithms, by dividing the differential of the number by the number

itself, is appropriate only for positive numbers and that, consequently, this

differentiation d ℓ x = dx
x is appropriate only when x indicates a positive

quantity. But I admit that this response, if it were right, would shake the

foundation of all of analysis, which consists principally in the generality of

the rules and operations which are judged to be true, whatever the nature

we suppose the quantities to be that we apply them to.

4. But, even though the rule to differentiate logarithms is generally true, so

that d ℓ x = dx
x whether x is a positive or negative quantity, the argument of

M. Bernoulli does not prove what it claims to prove. I say that just because

the differentials of the quantities ℓ(x) and ℓ(−x) are equal, it does not at

all follow that the quantities themselves are equal to each other, because we

know that two quantities which differ by a constant have the same differential.

Thus the differentials of x+ 1 and of x− 1 are both equal to dx, without us

being able to conclude an equality between the quantities x + 1 and x − 1.

Besides that, M. Bernoulli could have proved by the same reasoning that

ℓ 2x = ℓ x, since

d ℓ 2x =
2 dx

2x
=

dx

x
= d ℓ x

and in general it would follow that ℓ(nx) = ℓ(x), where n indicates an arbi-

trary number. That is why from the equality between the differentials of ℓ(x)

and ℓ(−x), we cannot conclude anything, except that these two logarithms

differ by a constant quantity. And indeed, ℓ(−x), because −x = x · (−1),
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is none other than ℓ(x) + ℓ(−1). It is true that M. Bernoulli claimed that

ℓ(−1) = ℓ(1) = 0, in which case we would without doubt have ℓ(−x) = ℓ(+x),

but this is precisely what M. Leibnitz had denied and M. Bernoulli wished

to prove by this argument, so that in this area, nothing is yet decided.

5. In the same passage which I just examined, M. Bernoulli makes use of still

another argument, but one which differs from the preceding only in the way

it is said, when he holds that the logarithmic curve has, from two sides of its

asymptote, two equal and similar parts, so that to each abscissa or logarithm

there correspond two ordinates or equal numbers, one positive and the other

negative. For, considering the equation of this curve

y dx = a dy,

where x indicates the abscissa taken on the asymptote of the logarithm, y

the ordinate, and a the constant subtangent, it would seem to follow that, if

to the same abscissa x there corresponds the value y = u, it will correspond

also to y = −u, since, if +u dx = +a du, we will also have −u dx = −a du.

But this reasoning is similar to the preceding, and it would follow from it

as well that to each abscissa x, there would also correspond the ordinate

y = 2u, and in general y = nu, so that this curve would have not only two

ordinates, y = u and y = −u, which would correspond to the abscissa x, but

the number of ordinates would be infinite. This is a consequence, however,

that we are quite a long way from admitting. From this we see that this

argument does not prove that the logarithm has two similar branches on two

sides of its asymptote.

6. But one will perhaps object that it is nevertheless the surest means to

judge the shape of a curve and the number of its branches by its equation,

and that it is by this principle that the geometers determine the forms of all

the algebraic curves. To which I respond that this method has a place only

when the equation for the curve is algebraic or at least conceived in finite

terms, and that a differential equation is never appropriate to this design.

For we know that a differential equation is always indeterminate, because of

an arbitrary constant it includes which we must introduce in the integration,

so that such an equation always embraces an infinity of curves at the same

time. We only have to look at the differential equation for the parabola

2y dy = a dx,
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and we will see that it contains not only this finite equation

y2 = ax,

but also this one

y2 = ax± ab,

whatever value we give to the quantity b. Consequently, by considering only

the differential equation 2y dy = a dx, we would have to conclude that to the

same abscissa x there corresponds not only the ordinate y =
√
ax, but again

y =
√
ax± a2, and in general y =

√
ax± ab. This reflection is sufficient

to show that we cannot judge the shape of a curve by looking at only its

differential equation.

7. Now, M. Bernoulli, as well as several mathematicians who also hold the

same belief, try to prove by still other arguments that the asymptote of

the logarithm is at the same time its diameter. These arguments are based

either on the construction of this curve, or else on analogy. One makes use of

analogy by considering, instead of the equation for the logarithmic dx = dy
y ,

this more general one

dx =
dy

yn

whose integral is

x = C − 1

(n− 1)yn−1
.

We note here that whenever n is an odd number, the curve has, without

question, a diameter, or two equal and similar branches. This noted, the

argument is that we suppose n = 1, and since 1 is an odd number, the log-

arithmic must have the same property. This is, in my opinion, the strongest

argument that we have heretofore brought for proving that the logarithmic

has a diameter. But I will nevertheless show that this conclusion we want to

draw is not sufficiently certain.

8. When it is a question, in analysis, of the case of integrability or, in ge-

ometry, of certain properties of curves, we rarely find propositions that are

general enough, and it is nearly always necessary to except one or several

cases which do not apply. One can indeed say that this formula xndx is in

general integrable, whatever number we put for n, provided that we exclude
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the case n = −1. And it is the same as well with several other general for-

mulas, which we can almost never affirm are integrable in all cases without

exception. In the same way, when we say that the equation

dx =
dy

yn

always represents an algebraic curve, whatever rational number we put for n,

this proposition would suffer but a single exception, that of the case n = 1.

Therefore, since this case is specially distinguished from all the others, what

will guarantee that it is not necessary to make an exception to the rule

mentioned regarding a diameter which we would like to attribute to the

curve comprised under the equation dx = dy
y ? For, in all the other cases

where n is equal to an odd number, we recognize with evidence the necessity

of a diameter, since in these cases the equation is integrable. But in the case

n = 1 this evidence ceases entirely, due to the impossibility of integration.

Consequently, we are obliged at least to admit that the conclusion we want

to draw from this argument is not sufficiently certain.

9. One will perhaps doubt that judging the property of a diameter is subject

to exceptions similar to what we must recognize in integration. But I will

show very clearly that, even for the algebraic curves, it is often necessary to

admit some exception relating to the property of diameters. Let us consider,

for example, this general equation

y =
√
ax+ 4

√
a3(b+ x),

and we will not hesitate to conclude that this curve always has a diameter,

since by reducing it to a rationality we reach an equation of degree 8 where

all the exponents of the powers of y are even. But, however certain this

conclusion seems, we must exclude from it the case where b = 0. For then, if

we free the equation y =
√
ax+

4
√
a3x of irrationality, we will have precisely

y2 − 2y
√
ax+ ax =

√
a3x

or

y2 + ax = (2y + a)
√
ax

and therefore, taking the squares again

y4 + 2axy2 + a2x2 = 4axy2 + 4a2xy + a3x
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or

y4 − 2axy2 − 4a2xy + a2x2 − a3x = 0

which, because of the 4a2xy term, is lacking a diameter. So, since in the

algebraic curves we are obliged to sometimes recognize exceptions, how can

we be assured that the case in question does not require them also? And

therefore, more is required for the given argument to prove invincibly that

the logarithmic has a diameter.

10. The same uncertainty is found in the other arguments we derive from

the construction of the logarithmic curve by the quadrature of the hyperbola.

For, even when we would turn this construction so that it necessarily results

in two branches of the logarithmic, we would still have quite strong reasons

for doubting that these two branches necessarily belong together and that

they constitute only a single continuous line. To prove this, I could relate

several examples of constructions by which we obtain two different curves

that are not connected together by the link of continuity. For, since we

can always encompass two curves, however different they may be, under one

equation, by multiplying their equations together, we only have to imagine

such a construction which fits this given composite equation, and it will

furnish the two given curves, as if they formed only a single curve. Indeed,

having described on the same axis the two parabolas

v2 = ax and u4 = a3x,

let us construct from them a new curve whose ordinate y, corresponding to

the same abscissa x, will be equal to the sum of the ordinates v+u of the two

given parabolas. Now, since each of these ordinates may be taken positively

or negatively, we will find, for each abscissa x, four ordinates v + u, −v − u,

v− u, −v+ u, and the constructed curve will have a diameter. Nevertheless,

the equation

y = v + u+
√
ax+

4
√
a3x

shows us that the curve does not have a diameter, as I just noted in the

preceding article.

11. Furthermore, just as there are constructions from which we derive two dif-

ferent curves, there are also defective constructions which give only one part

of a curve. For, let a circle be described whose diameter is a, on which taking

the abscissa equal to x, the ordinate y will be equal to
√
ax− x2. Let us then

extend each ordinate until it becomes equal to the chord
√
x2 + y2 =

√
ax,
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and this new ordinate, which we name z =
√
ax, will indicate a parabola. But

this description of the parabola does not extend beyond the circle, though

the parabola itself extends to infinity. This circumstance proves yet again

that it is not always certain to judge the true form of a curve, and all the

parts it contains, by whatever construction one might give.

12. Moreover, the method itself of judging all the parts which belong to

the same curve is appropriate only for algebraic curves. For, after having

freed the equation which expresses the nature of the curve of all irrationality,

we consider the rational equation which results, whether it contains rational

factors or not. In the first case, we judge that the curve is composed of

as many different curves as there are factors. But if the equation is not

resolvable into rational factors, we conclude that all the points which are

indicated by this equation belong to the same curve. This is why, when it is

a question of transcendental curves, since the equation itself is not algebraic,

we cannot even form the question of whether it has rational factors or not,

and therefore the judgment of which parts belong to the same curve is no

longer appropriate, if these parts are not directly connected together. And

therefore, we are not in a position to decide if the logarithmic has two equal

branches which both relate to the same asymptote, or not. At least, we must

agree that this decision, whatever it may be, is not necessarily connected to

the subject in question, namely whether the logarithms of negative numbers

are real or imaginary.

13. Logarithms are based on a constant number, taken arbitrarily, whose

logarithm we suppose to be equal to 1. Let this number be e, and let x

indicate the logarithm of the number y, so that x = ℓ y, and we will then

have y = ex. Therefore, the logarithm x of a given number y is nothing

other than the exponent of the power of e which is equal to the number y.

In the common tables, we assume this arbitrary number e = 10, and then

x will be the logarithm of the number y, if 10x = y; and in the logarithms

that we call hyperbolic and which have the property that, if ω indicates an

infinitely small fraction, the logarithm of the number 1+ω is equal to ω, the

number e, whose the logarithm is 1, becomes equal to 2.718281828459. Now,

whatever value we give to this number e, provided that it is greater than 1,

we see from the formula y = ex that whenever y is a positive number, it is

possible to assign to x a real value, so that ex becomes equal to y. But it is

also evident that if y is a negative number, we cannot find a real value for x

such that the power ex becomes negative and equal to y.
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14. It is true, however, that if x is a fraction with an even denominator, the

power, or rather the root, ex may be taken positively as well as negatively, so

that if the logarithm x is 1
2 , the number y whose logarithm is 1

2 may equally

well be −
√
e as

√
e. But this ambiguity is encountered only in the case where

x is a fraction whose denominator is an even number, and if the logarithm x

were 2, it would certainly be false that 2 would be the logarithm of y = −ee,

since −ee is not at all equal to ee; and therefore it is necessary to at least

admit that the logarithms of negative numbers are not in general real. But

in regard to the ambiguity of the formula ex in the case where x is a fraction

with an even denominator, I do not know if we can allow it in logarithms.

For, taking into account the nature and the usage of logarithms, it seems

that to each logarithm there may correspond only one number.

15. Be that as it may, we will never prove by similar reasoning that the

logarithm of −1 is equal to that of +1 or to zero, since e0 cannot have values

other than +1. If someone said that e0 can be regarded as e0/2 and therefore

as
√
e0 or

√
1, which would be both −1 and +1, one would be able, by the

same reason, to prove that x1, being equal to x2/2, would be equal to both +x

and −x, and furthermore that a+x would be the same thing as a−x, and one

would be able to hold, by the same argument, that all quantities are equal to

each other. But if the logarithm of −1 is not equal to 0, it will necessarily be

imaginary. And since −y = −1 · y, we will have ℓ(−y) = ℓ(−1) + ℓ(y), from

which it is clear that when the logarithm of +y is real, the logarithm of −y

must absolutely be imaginary.

16. The thesis that each logarithm x may correspond to only a single number

y will be again confirmed, when we consider the resolution of the formula ex

in this series

ex = 1 + x+
x2

1 · 2
+

x3

1 · 2 · 3
+

x4

1 · 2 · 3 · 4
+

x5

1 · 2 · 3 · 4 · 5
+ · · · ,

where e is the number whose hyperbolic logarithm is equal to 1. This series

is regarded in analysis as altogether equivalent to the expression ex, and we

cannot doubt that its value is determined as soon as we give to x a fixed

value, since this series is always convergent, however large the number we

substitute for x. And for this reason, we are right to hold that since the

expression ex indicates the number whose logarithm is x, it never contains

the slightest ambiguity, and that its value is always unique and positive,

whatever fraction we may take for x, so that even when x is a fraction like
1
2 , the expression ex will always have only a single positive value.
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17. If one wanted to insist that the formula ex, in the case of x = 1
2 , had

a double value, and that 1
2 were the logarithm of both −

√
e and +

√
e, it

would follow that the logarithms of imaginary numbers are also real. For let

us suppose x = 1
3 , and we know that the formula e1/3 contains three values

3
√
e,

−1+
√

−3

2
3
√
e,

−1−
√

−3

2
3
√
e,

each of whose logarithms would be equal to 1
3 . Let us suppose x = 1

4 and

the values of y = e1/4 will be

4
√
e, − 4

√
e, +

√
−1 4

√
e, −

√
−1 4

√
e.

Then we would have

ℓ(+
√
−1 · 4

√
e) = ℓ(−

√
−1 · 4

√
e) = 1

4 .

But ℓ 4
√
e = 1

4 ℓ e = 1
4 , from which it would follow that ℓ

√
−1 = 0. Now,

M. Bernoulli made this beautiful discovery that
ℓ
√

−1√
−1

indicates the quadra-

ture of the circle, and since
√
−1 is unquestionably imaginary, it must be

that ℓ
√
−1 is also, and so nobody will have less right than M. Bernoulli

himself to hold henceforth that ℓ
√
−1 is equal to 0.

18. So having shown that nobody has yet sufficiently proved that the log-

arithms of negative numbers are real, but rather that the opposite belief,

according to which the logarithms of negative numbers are imaginary, is con-

sistent with the truth, I will put forward the difficulties that we encounter

on both sides, whether we hold that the logarithms of negative numbers are

real, or we take them to be imaginary. These difficulties will seem so strong,

and even so replete with contradictions, that we will be at pain to under-

stand how it would be possible to extricate ourselves from this matter and

to safeguard the theory of logarithms. I hope, nevertheless, to achieve this

goal.

19. If we claim, with M. Bernoulli, that the logarithms of negative numbers

are the same as those of the positive numbers, or what comes to the same

thing, that ℓ(−1) = 0, we find the following difficulty: either it is true in

general that

ℓ ax = x ℓ a,
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or it is not. If it is true, we will have

ℓ(−1)x = x ℓ(−1) = 0

which we will easily agree with if x is a whole number. But if x is a frac-

tion, we will have ℓ
√
−1 = 0 as well, and consequently the reduction of

M. Bernoulli of the arcs of the circle to imaginary logarithms would be false.

This would be absurd, since this discovery is established by the most solid

proofs in analysis. But if we deny that ℓ ax = x ℓ a, we overturn the entire

theory of logarithms, for although we would claim to permit the resolution

ℓ ax = x ℓ a in the case that x were a whole number, it would nevertheless

become altogether useless, if x were to indicate a number in general, or an

unknown.

20. Let us say, then, with M. de Leibnitz that the logarithms of negative

numbers are not real, but imaginary, and we will soon notice that we have

fallen into the same trouble. For, let ℓ(−1) = p, so that p is an imaginary

number, and we will not be able to deny that ℓ(−1)n = np, especially when

n is a whole number. So then let n = 2, and we will have

ℓ(−1)2 = ℓ(+1) = 2p.

But in the doctrine of logarithms, it is the first principle that ℓ(+1) = 0.

Consequently, we will have 2p = 0 and therefore p = 0, which is contrary to

the hypothesis. We will prove as well that

ℓ
√
−1, ℓ

−1±
√

−3

2

and the logarithms of the higher roots of unity must all be equal to 0, which

results in the same contradictions that were encountered in the preceding

hypothesis.

21. Notice, then, that we encounter quite palpable contradictions, whichever

way we turn. I do not doubt that most mathematicians have noticed this,

although they have not judged it appropriate to publish their doubts on this

matter, for fear of rendering analysis overly suspect, if they were not in a

position to save the theory of logarithms. For it would be without doubt

an indelible stain in analysis, if the doctrine of logarithms were so replete

with contradictions that it were impossible to find a reconciliation. So for a

long time these difficulties tormented me, and I was under several illusions

concerning this matter, in order to satisfy myself in some manner, without
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being obliged to completely overturn the theory of logarithms. I imagined

that, just as a quantity always admits two square roots, three cube roots,

four biquadratic roots, etc., in the same manner a quantity would be able

to have a double half, a triple third, a quadruple fourth, etc. only one of

which would be real, the others imaginary. In this way, setting ℓ y = x, I was

thinking that

ℓ
√
y = 1

2x and ℓ(−√
y) = 1

2x
′

and that 1
2x and 1

2x
′ would be different, although the double of either would

be the same, equal to x. In the same manner, for the three cube roots of y,

it would be

ℓ 3
√
y = 1

3x, ℓ
−1+

√
−3

2
3
√
y = 1

3x
′ and ℓ

−1−
√

−3

2
3
√
y = 1

3x
′′

where 1
3x,

1
3x

′, and 1
3x

′′ would be different numbers, the first, 1
3x, real, and

the two others, 1
3x

′ and 1
3x

′′, imaginary, although the triple of each would be

equal to x. This explanation seemed to me extremely paradoxical indeed, and

unsustainable, but still less absurd than the contradictions that I would have

been obliged to admit in the theory of logarithms of negative and imaginary

numbers.

22. Having gotten a good sense of the importance of all these difficulties

which are encountered in the doctrine of logarithms, and which even appear

to be open contradictions, one will be hard pressed to understand that it

is possible to lift all these difficulties without bringing any attack upon the

certitude of analysis and the rules on which it is based. However, the truth is

too firmly established for it to be subject to any contradiction, and it is only

incorrect ways of looking at it that can blind us. Often, it is so difficult to

notice the lack of correctness which is found in our ideas and which shows us

such great difficulties, that it seems to us altogether impossible to rescue the

truth. This is precisely the case in which we find ourselves in relation to the

logarithms of negative and imaginary numbers. For, after having carefully

weighed all the difficulties that I just detailed, I have found that they come

only from our supposition that each number has only a single logarithm.

For, if this supposition were true, it would be indeed certain that we could

scarcely find the way to extract ourselves from the predicament this matter

puts us in. But, as soon as we grant that a number can have several, and

even an infinity, of logarithms, then all the difficulties mentioned lose their

force and vanish altogether, and we will recognize the most perfect harmony

between all the truths.
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23. I say, then, that although the number whose logarithm we suppose to

be 1 is determined, each number nevertheless has an infinity of logarithms,

all of which except for a single one, are imaginary, if the number is positive.

But if it is negative or imaginary, all its logarithms will be equally imaginary.

As a consequence of this, the logarithm of unity will be not only 0, but there

will be yet an infinity of imaginary quantities each of which is just as well

a substitute for the logarithm of unity as is 0. So let all the logarithms of

unity be

0, α, β, γ, δ, ϵ, ζ, η, θ, · · ·

and, since the logarithm of the square root is half the logarithm of the power,

and
√
1 is both +1 and −1, the logarithms of the first value, +1, will be

0, 1
2β,

1
2δ,

1
2ζ,

1
2θ, · · ·

and the logarithms of the second value, −1, will be

1
2α,

1
2γ,

1
2ϵ,

1
2η, · · ·

which are different from the preceding, although their doubles give the loga-

rithms of unity. Furthermore, taking the cube roots, we will have

ℓ 1 = 0, 1
3γ,

1
3ζ,

1
3 ι, · · ·

ℓ
−1+

√
−3

2 = 1
3α,

1
3δ,

1
3η, · · ·

ℓ
−1−

√
−3

2 = 1
3β,

1
3ϵ,

1
3θ, · · ·

and this consideration already wipes out most of the difficulties which trou-

bled us above.

24. In order to prove this infinite plurality of logarithms which corresponds

to each number, we only have to look at the great relation which is found

between the logarithms and the arcs of the circle, since we know that the

arcs of the circle can be expresses by imaginary logarithms, and conversely,

the logarithms by the imaginary arcs of the circle. Therefore, because the

sine or cosine corresponds to the numbers and the arcs to the logarithms,

just as the same sine corresponds to an infinity of different arcs, thus it

follows that the same number must correspond to an infinity of different

logarithms. We understand the circle better than the logarithmic curve,

and for this reason consideration of the circle will lead us to a more perfect

understanding of logarithms than the logarithmic itself. Furthermore, in the
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circle we are able to determine all the arcs which correspond to the same

sine or cosine, and although these arcs in the passage to logarithms become

imaginary, they will not fail, by convincing us of the infinity of logarithms,

to give us an understanding of their expressions and the kind of non-reality

under which they are comprised, and that is all we can wish for understanding

an imaginary quantity.

25. Let φ be an arbitrary arc of a circle, whose radius I suppose to be equal

to 1. Let x be the sine of the arc and y its cosine, so that y =
√
1− x2.

Then, calling the circumference of this circle 2π, or the arc of 180◦ = π, it is

clear that all the arcs included in this general expression

±2nπ + φ

will have not only the same sine, x, but also the same cosine, y =
√
1− x2,

provided that n signifies an arbitrary whole number. Now, since

dφ =
dx

y
=

dx√
1− x2

,

Let us suppose

x = zi,

and we will have

dφ =
i dz√
1 + z2

.

But we know that ∫
dz√
1 + z2

= ℓ(
√
1 + z2 + z) + C.

Consequently, we will have

φ = i ℓ
(√

1− x2 +
x

i

)
+ C,

where it is clear that the constant C is equal to zero, since by setting x = 0

the arc φ must vanish as well. Having then

φ = i ℓ
(√

1− x2 − ix
)
,

Translator’s note: Most occurrences of
√
−1 in the original are represented

here using the symbol i.
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we will have

φ =
1

i
ℓ(
√
1− x2 + ix)

or

φ =
1

i
ℓ(y + ix).

26. This equation we just found, expressing the relation between the arc φ

and the sine and cosine, will also apply for all the other arcs which have the

same sine, x, and cosine, y. Consequently, we will have

φ± 2nπ =
1

i
ℓ(y + ix)

and therefore

ℓ(y + ix) = i (φ± 2nπ).

From this it is clear that the same number y + ix corresponds to infinitely

many logarithms, which are all included in this general formula i (φ± 2nπ),

where in place of n we can put any whole number we wish. Since x is the

sine and y is the cosine of the arc φ, let us set x = sinφ and y = cosφ, and

we will have this equality

ℓ(cosφ+ i sinφ) = i (φ± 2nπ).

27. From this equation, I will examine the principal cases which will furnish

quite a clarification of this matter. So first let φ = 0, and we will have

cosφ = 1 and sinφ = 0, and the equation we found will give us

ℓ 1 = ±2nπi.

Then, putting successively for n all the whole numbers, the logarithms of

unity will be

ℓ 1 = 0, ±2πi, ±4πi, ±6πi, ±8πi, · · · ,

where we see that, though the logarithm of 1 is 0, like everybody knows it

to be, there is also an infinity of imaginary expressions, each of which is as

much the logarithm of unity as 0 is.

28. This sole consideration puts us in a position to give all the logarithms

for any positive number that one might propose. For, let a be the number
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proposed and α its hyperbolic logarithm, which we find by ordinary methods,

and since

ℓ a = ℓ 1 + ℓ a = α+ ℓ 1,

all the logarithms of the number a will be

ℓ a = α, α± 2πi, α± 4πi, α± 6πi, α± 8πi, · · · ,

all of which except the first, α, are imaginary. It is necessary to note that

I am speaking here only of the hyperbolic logarithms to which we are led

by integration. But since we know that the various kinds of logarithms

all observe a constant ratio between them, everything that I just said and

everything I will say about the hyperbolic logarithms will easily be applied to

the logarithm tables where we put ℓ 10 = 1, or to any other kind of logarithm.

29. Now let the given arc φ be 180◦, or φ = π, and we will have sinφ = 0

and cosφ = −1. This assumption made, the general equation found will be

changed into this form

ℓ(−1) = (π ± 2nπ)i = (1± 2n)πi,

from which we derive the entire infinity of logarithms of the negative number

−1, for we will have

ℓ(−1) = ±πi, ±3πi, ±5πi, ±7πi, · · · ,

and from this we clearly see that all the logarithms of −1 are imaginary, and

all different from the logarithms of +1. That notwithstanding, the logarithms

of (−1)2, which will be

±2πi, ±6πi, ±10πi, · · · ,

are visibly contained in the logarithms of +1, which suffices to save us from

the apparent contradictions which I made mention of above, although it does

not conversely follow that the halves of all the logarithms of +1 are logarithms

of −1, which the very nature of the quantities does not permit, since −1 is

not the sole square root of +1.

30. We will now be easily assured that all the logarithms of all the negative

numbers are imaginary. For let −a be an arbitrary negative number, and

α the logarithm of the positive number a, found by the ordinary methods,
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so that ℓ(+a) = α, and because ℓ(−a) = ℓ a + ℓ(−1), we will have all the

logarithms of the negative number −a expressed as

ℓ(−a) = α± πi, α± 3πi, α± 5πi, α± 7πi, · · · ,

which are all imaginary. By this, then, the question debated between Messrs.

Leibnitz and Bernoulli, namely, whether the logarithms of negative numbers

are real or imaginary, is decided in favor of the first, who held them to be

imaginary, and all the objections that M. Bernoulli has raised against this

belief no longer have any hold on this verdict.

31. I will go further, and after having determined the logarithms of both

positive and negative numbers, I will go on to imaginary numbers. For this

purpose, let φ = 1
2π, and we will have cosφ = 0 and sinφ = 1, from which

we derive

ℓ i =
(
1
2π ± 2nπ

)
i =

(
±2n+ 1

2

)
πi,

and therefore all the logarithms of +i will be

ℓ(+i) = 1
2πi, −3

2πi, +5
2πi, −7

2πi, +9
2πi, · · · .

But if we put φ = − 1
2π, because cosφ = 0 and sinφ = −1 we will have

ℓ(−i) =
(
−1

2π ± 2nπ
)
i

and consequently

ℓ(−i) = −1
2πi, +3

2πi, −5
2πi, +7

2πi, · · · .

From this it is evident that by adding the logarithms of +i and −i together, in

order to get the logarithms of the product, +1, we obtain the same logarithms

that we found for +1. And if we subtract the logarithms of −i from the

logarithms of +i, in order to get logarithms of the quotient +i
−i = −1, we will

get the logarithms found for −1.

32. Let, besides that, φ = 1
3π, and we will have cosφ = 1

2 and sinφ =
√
3
2 ,

from which we will derive

ℓ
1+

√
−3

2 =
(
1
3π ± 2nπ

)
i,
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so that the logarithms of
1+

√
−3

2 will be

ℓ
1+

√
−3

2 = 1
3πi, − 5

3πi, −11
3 πi, −17

3 πi, · · · ,
+ 7

3πi, +13
3 πi, +19

3 πi, · · · .

Let φ = −1
3π, and we will have cosφ = 1

2 and sinφ = −
√
3
2 , from which we

will obtain

ℓ
1−

√
−3

2 =
(
−1

3 ± 2n
)
πi,

and therefore

ℓ
1−

√
−3

2 = − 1
3πi, + 5

3πi, +11
3 πi, +17

3 πi, · · · ,
− 7

3πi, −13
3 πi, −19

3 πi, · · · .

Let φ = 2
3π, so that cosφ = − 1

2 and sinφ =
√
3
2 , and we will have

ℓ
−1+

√
−3

2 =
(
2
3 ± 2n

)
πi,

and

ℓ
−1+

√
−3

2 = 2
3πi, − 4

3πi, − 10
3 πi, − 16

3 πi, · · · ,
+ 8

3πi, + 14
3 πi, + 20

3 πi, · · · .

Finally, putting φ = − 2
3π, we will have cosφ = − 1

2 and sinφ = −
√
3
2 , which

gives

ℓ
−1−

√
−3

2 =
(
− 2

3 ± 2n
)
πi,

and

ℓ
−1−

√
−3

2 = − 2
3πi, + 4

3πi, + 10
3 πi, + 16

3 πi, · · · ,
− 8

3πi, − 14
3 πi, − 20

3 πi, · · · .

Since we know that
−1+

√
−3

2 and
−1−

√
−3

2

are cube roots of +1, however we do the tests, we repeatedly find a marvelous

agreement with the truth.

33. To get the logarithms of powers, we only have to follow the common rule

and multiply the logarithm of the root by the exponent of the power. But,

since the root has an infinity of logarithms, we can add together as many
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different values as the exponent of the power contains units. In this way,

since the logarithms of (−1) were found to be

±πi, ±3πi, ±5πi, ±7πi, · · · ,

not only the doubles of these logarithms will give the logarithm of the square

(−1)2, but also the sums of two arbitrary ones, and by this means we will

obtain all these formulas

0, ±2πi, ±4πi, ±6πi, ±8πi, · · ·

which are all the logarithms of +1. Furthermore, joining by threes the loga-

rithms of
−1+

√
−3

2 or
−1−

√
−3

2

we will likewise obtain all the logarithms of +1, since each of

(−1+
√

−3

2

)3
and (−1−

√
−3

2

)3
is equal to unity.

34. This facility for finding the logarithms of powers is also confirmed by the

general formula of §26, for it has been proved that

(cosφ+ i sinφ)µ = cosµφ+ i sinµφ,

so we have

ℓ(cosφ+ i sinφ)µ = ℓ(cosµφ+ i sinµφ).

This formula being similar to the first, we only have to put µφ in place of

φ in the logarithm, and since it is permitted to put φ ± 2mπ for φ, we will

have

ℓ(cosφ+ i sinφ)µ = (µφ± 2µmπ ± 2nπ)i,

and when the exponent is a fraction µ/ν we will have

ℓ(cosφ+ i sinφ)µ/ν =
1

ν
(µφ± 2µmπ ± 2νnπ)i,
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the letters m and n indicating arbitrary whole numbers. Consequently, in

the case φ = 0 and φ = π, we will have

ℓ 1µ/ν =
1

ν
(±2µm± 2νn)πi

and

ℓ(−1)µ/ν =
1

ν
(µ± 2µm± 2νn)πi.

And having taken account of this situation, all the difficulties which might

be encountered in this matter will disappear entirely, and the doctrine of the

logarithms will be safeguarded from all attacks.


